4 resultados para Macrophages péritonéaux
em QSpace: Queen's University - Canada
Resumo:
The transition of epithelial-like tumour cells to those exhibiting mesenchymal characteristics (Epithelial-to-mesenchymal Transition; EMT) is an integral process in breast cancer metastasis. EMT can be promoted by Transforming growth factor-beta (TGF-β) which can be found at high levels in the tumour stroma. Tumour-associated macrophages (TAMs) can also induce EMT in breast cancer cells, which is one way that they promote breast cancer metastasis. Vitamin D signalling has been implicated in EMT suppression and plays a role in modulating macrophage differentiation and stimulating their anti-inflammatory functions. This project had two major aims. First, we aimed to create and verify a unique fluorescent reporter gene construct designed to evaluate the dynamics of EMT in real-time and at the single-cell level. While some components of this reporter system were successfully validated, work to complete the final reporter construct is ongoing. The second and main aspect of this project focused on exploring the ability of 1,25-dihydroxyvitamin D3 (1,25D3) to modulate the interaction between mesenchymal mammary tumour cells and TAMs. Unexpectedly, in short-term treatment (48 hours) studies of 4T1 murine mammary tumour cells, we observed that 1,25D3 and TGF-β signalling work together to increase expression of the mesenchymal markers, Snai1, Fn1, and Col1a1. 1,25D3 and TGF-β also synergistically activate transcription of the gene encoding the 1,25D3-catabolizing enzyme, Cyp24a1. The ability of 1,25D3 and TGF-β to enhance expression of these genes was diminished in a long-term treatment (14 days) of 4T1 cells, and this effect was accompanied by a decrease in cell proliferation. 1,25D3 may also cooperate with cytokines produced by normal macrophages and macrophages considered to be TAM-like. Conditioned media experiments revealed that in the presence of factors from normal macrophages, 1,25D3 enhanced expression of Fn1, and in the presence of factors from TAM-like macrophages, 1,25D3 enhanced expression of Fn1 and Cyp24a1. Rather than mitigating the interaction as hypothesized, 1,25D3 may exacerbate the tumour-promoting effects of the EMT-TAM relationship. Also, signalling pathways involved in the EMT-TAM relationship may synergize with 1,25D3 to upregulate Cyp24a1 expression. These findings are important for understanding the potential of vitamin D compounds to be used in the treatment of breast cancer.
Resumo:
Foreign pathogens are recognized by toll-like receptors (TLR), present on various immune cells such as professional antigen-presenting cells (pAPCs). On recognition of its ligand, these receptors activate pAPCs, which may in turn influence naïve CD8+ T cell activation and affect their abilities to clear viral infection. However, how TLR ligands (TLR-L) can regulate CD8+ T cell responses have not been fully elucidated. This thesis will focus on examining how the presence of components from foreign pathogens, e.g. viral or bacterial infection, can contribute to shaping host immunity during concurrent viral infections. Since nitric oxide (NO), an innate effector immune molecule, was recently suggested to regulate proteasome activity; we sought to examine if NO can influence MHC-I antigen presentation during viral infections. The data in this section of the thesis provides evidence that combined TLR engagement can alter the presentation of certain CD8+ epitopes due to NO-induced inhibition in proteasome activity. Taken together, the data demonstrate that TLR ligation can influence the adaptive immune response due to induction of specific innate effector molecules such as NO. Next, the influence of combined TLR engagement on CD8+ T cell immunodominance hierarchies during viral infections was examined. In this section, we established that dual TLR2 and TLR3 stimulation alters immunodominance hierarchies of LCMV epitopes as a result of reduced uptake of cell-associated antigens and reduced cross-presentation of NP396 consequently suppressing NP396-specific CD8+ T cell responses. These findings are significant as they highlight a new role for TLR ligands in regulating anti-viral CD8+ T cell responses through impairing cross-presentation of cell-associated antigens depending on the type of TLR present in the environment during infections. Finally, we addressed TLR ligand induced type I interferon production and the signalling pathways that regulate them in two different mouse macrophage populations – those derived from the spleen or bone marrow. In this study, we observed that concomitant TLR2 stimulation blocked the induction of type I IFN induced by TLR4 in bone marrow-derived macrophages, but not spleen-derived macrophages in SOCS3-dependent manner. Taken together, the data presented in this thesis have defined new facets of how anti-viral responses are regulated by TLR activation, especially if multiple receptors are engaged simultaneously.
Resumo:
FES protein-tyrosine kinase (PTK) activation downstream of the KIT receptor in mast cells (MC) promotes cell polarization and migration towards the KIT ligand Stem cell factor (SCF). A variety of tumours secrete SCF to promote MC recruitment and release of mediators that enhance tumour vascularization and growth. This study investigates whether FES promotes MC migration via regulation of microtubules (MTs), and if FES is required for MC recruitment to the tumour microenvironment. MT binding assays showed that FES has at least two MT binding sites, which likely contribute to the partial co-localization of FES with MTs in polarized bone marrow-derived mast cells (BMMCs). Live cell imaging revealed a significant defect in chemotaxis of FES-deficient BMMCs towards SCF embedded within an agarose drop, which correlated with less MT organization compared to control cells. To extend these results to a tumour model, mouse mammary carcinoma AC2M2 cells were engrafted under the skin and into the mammary fat pads of immune compromised control (nu/nu) or FES-deficient (nu/nu:fes-/-) mice. A drastic reduction in tumour-associated MCs was observed in FES-deficient mice compared to control in both mammary and skin tissue sections. This correlated with a trend towards reduced tumour volumes in FES-deficient mice. These results implicate FES signaling downstream of KIT, in promoting MT reorganization during cell polarization and for chemotaxis of MCs towards tumour-derived SCF. Thus, FES is a potential therapeutic target to limit recruitment of stromal mast cells or macrophages to solid tumours that enhance tumour progression.
Resumo:
The Fes protein tyrosine kinase is abundantly expressed in phagocytic immune cells, including tumor associated macrophages. Fes knockout mice (fes-/-) display enhanced sensitivity to LPS, and this was shown to be associated with increased NF-κB signaling and TNFα production from fes-/- macrophages. Interestingly, tumor onset in the mouse mammary tumor virus (MMTV-Neu) transgenic mouse model of breast cancer is significantly delayed in fes-/- mice, and this was associated with increased frequency of CD11b+ myeloid and CD3+ T cells in the premalignant mammary glands. Recent studies have also implicated Fes in cross-talk between MHC-I and the NF-κB and IRF-3 pathways in macrophages. Signal 3, the production of inflammatory cytokines and Type I interferons downstream of NF-κB and IRF-3 pathways in antigen presenting cells, is considered an important component of T-cell activation, after engagement of T cell receptor by MHC presented antigen (Signal 1) and co-receptors by their ligands (Signal 2). Using a lymphocytic choriomeningitis virus (LCMV) model of immune activation, I show that LPS stimulated fes-/- macrophages promote more robust activation of LCMV antigenspecific CD8+ T cells than wild type macrophages (fes+/+). Furthermore, LPS stimulated fes-/- macrophages showed increased phosphorylation of NF-B and IRF-3. I also showed that Fes colocalizes with MHC-I in dynamic vesicular structures within macrophages. These observations are consistent with a model where Fes regulates Signal 3 in antigen presenting cells through roles in cross-talk between MHC-I and the NF-kB and IRF-3 signaling pathways. This suggests that Fes plays an immune checkpoint role at the level of Signal 3, and that Fes inhibition could promote tumor immunity through increased Signal 3 driven T cell activation.