2 resultados para MTO
em QSpace: Queen's University - Canada
Resumo:
Thermal and fatigue cracking are the major pavement distresses that contribute to a drastic reduction of the pavement’s service life and performance in Ontario. Chemical oxidation and hardening of asphalt binders deteriorates its physical properties since physical properties of asphalts depend on its chemical composition. This thesis is aimed to establish a relationship between physical and chemical properties of asphalt binders. A secondary objective is to show the strong correlation between CTOD and temperature. All recovered and straight Ministry of Transportation of Ontario (MTO) samples were investigated using conventional Superpave® test method dynamic shear rheometer (DSR) as well as improved MTO test methods such as extended bending beam rheometer (eBBR) and double-edge-notched tension (DENT) test. DENT test was conducted for all Ontario contract samples at three different temperatures based on their performance grade after three hours of thermal conditioning and compared the results in terms of essential work of fracture, plastic work of fracture and CTOD at different temperatures. Good correlation exists between CTOD and temperature according to the DENT data. X-ray fluorescence (XRF) analysis was conducted to detect the presence of heavy metals such as zinc and molybdenum believed to have originated from waste engine oil. Fourier transform infra-red spectroscopy (FTIR) was performed to determine the abundance of functional groups such as carbonyl, sulfoxides, polyisobutylene, etc. XRF and FTIR analysis confirmed that most of the samples contain waste engine oil and/or oxidized residues, which is believed to be a root cause of premature pavement failures.
Resumo:
Thermal and fatigue cracking are the two of the major pavement distress phenomena that contribute significantly towards increased premature pavement failures in Ontario. This in turn puts a massive burden on the provincial budgets as the government spends huge sums of money on the repair and rehabilitation of roads every year. Governments therefore need to rethink and re-evaluate their current measures in order to prevent it in future. The main objectives of this study include: the investigation of fatigue distress of 11 contract samples at 10oC, 15oC, 20oC and 25oC and the use of crack-tip-opening-displacement (CTOD) requirements at temperatures other than 15oC; investigation of thermal and fatigue distress of the comparative analysis of 8 Ministry of Transportation (MTO) recovered and straight asphalt samples through double-edge-notched-tension test (DENT) and extended bending beam rheometry (EBBR); chemical testing of all samples though X-ray Fluorescence (XRF) and Fourier transform infrared analysis (FTIR); Dynamic Shear Rheometer (DSR) higher and intermediate temperature grading; and the case study of a local Kingston road. Majority of 11 contract samples showed satisfactory performance at all temperatures except one sample. Study of CTOD at various temperatures found a strong correlation between the two variables. All recovered samples showed poor performance in terms of their ability to resist thermal and fatigue distress relative to their corresponding straight asphalt as evident in DENT test and EBBR results. XRF and FTIR testing of all samples showed the addition of waste engine oil (WEO) to be the root cause of pavement failures. DSR high temperature grading showed superior performance of recovered binders relative to straight asphalt. The local Kingston road showed extensive signs of damage due to thermal and fatigue distress as evident from DENT test, EBBR results and pictures taken in the field. In the light of these facts, the use of waste engine oil and recycled asphalt in pavements should be avoided as these have been shown to cause premature failure in pavements. The DENT test existing CTOD requirements should be implemented at other temperatures in order to prevent the occurrences of premature pavement failures in future.