5 resultados para MATING
em QSpace: Queen's University - Canada
Resumo:
Social context, such as mate availability and perceived competition, can influence a male’s mating tactics. In Drosophila melanogaster most research has investigated how physical interactions and the perceived levels of sperm competition alter mating behaviour. I wanted to know if males would respond to the perceived social environments without the presence of physical interaction. Using a unique apparatus, I altered focal males’ social context by separating them physically from a social environment using a screen. Focal males were either in: (i) the presence of rival males and mates, (ii) the presence of potential mates only, (iii) isolation, or (iv) the presence of rival males only. I also manipulated the period the focal male was conditioned to a social environment to assess if the timing of cues is important. My findings suggest that the duration of acclimation alters male mating tactics. Regardless of social environment, the duration a male was conditioned influenced copulation latency. Males that were conditioned to their social environment for the duration of the experiment had differing copulation latencies between environments. Males held in isolation took longer to successfully court females, and transferred less sperm during mating then experimental males in the presence of rival males. Additionally, copulation duration correlated with the number of sperm transferred. Overall, my results suggest that the social environment and the perceived competition level affect mating strategies even without physical interactions. Since this apparatus may trick flies into believing they are a part of a social group, while controlling the male mating status, future work could examine behavioural, genetic and physiological phenotype effects of the social environment for both sexes.
Resumo:
The advent of next-generation sequencing has significantly reduced the cost of obtaining large-scale genetic resources, opening the door for genomic studies of non-model but ecologically interesting species. The shift in mating system, from outcrossing to selfing, has occurred thousands of times in angiosperms and is accompanied by profound changes in the population genetics and ecology of a species. A large body of work has been devoted to understanding why the shift occurs and the impact of the shift on the genetics of the resulting selfing populations, however, the causes and consequences of the transition to selfing involve a complicated interaction of genetic and demographic factors which are difficult to untangle. Abronia umbellata is a Pacific coastal dune endemic which displays a striking shift in mating system across its geographic range, with large-flowered outcrossing populations south of San Francisco and small-flowered selfing populations to the north. Abronia umbellata is an attractive model system for the study of mating system transitions because the shift appears to be recent and therefore less obscured by post-shift processes, it has a near one-dimensional geographic range which simplifies analysis and interpretation, and demographic data has been collected for many of the populations. In this study, we generated transcriptome-level data for 12 plants including individuals from both subspecies, along with a resequencing study of 48 individuals from populations across the range. The genetic analysis revealed a recent transition to selfing involving a drastic reduction in genetic diversity in the selfing lineage, potentially indicative of a recent population bottleneck and a transition to selfing due to reproductive assurance. Interestingly, the genetic structure of the populations was not coincident with the current subspecies demarcation, and two large-flowered populations were classified with the selfing subspecies, suggesting a potential need for re-evaluation of the current subspecies classification. Our finding of low diversity in selfing populations may also have implications for the conservation value of the threatened selfing subspecies.
Resumo:
Kinesins are molecular motors that transport intracellular cargos along microtubules (MTs) and influence the organization and dynamics of the MT cytoskeleton. Their force-generating functions arise from conformational changes in their motor domain as ATP is bound and hydrolyzed, and products are released. In the budding yeast Saccharomyces cerevisiae, the Kar3 kinesin forms heterodimers with one of two non-catalytic kinesin-like proteins, Cik1 and Vik1, which lack the ability to bind ATP, and yet they retain the capacity to bind MTs. Cik1 and Vik1 also influence and respond to the MT-binding and nucleotide states of Kar3, and differentially regulate the functions of Kar3 during yeast mating and mitosis. The mechanism by which Kar3/Cik1 and Kar3/Vik1 dimers operate remains unknown, but has important implications for understanding mechanical coordination between subunits of motor complexes that traverse cytoskeletal tracks. In this study, we show that the opportunistic human fungal pathogen Candida albicans (Ca) harbors a single version of this unique form of heterodimeric kinesin and we present the first in vitro characterization of this motor. Like its budding yeast counterpart, the Vik1-like subunit binds directly to MTs and strengthens the MT-binding affinity of the heterodimer. However, in contrast to ScKar3/Cik1 and ScKar3/Vik1, CaKar3/Vik1 exhibits weaker overall MT-binding affinity and lower ATPase activity. Preliminary investigations using a multiple motor motility assay indicate CaKar3/Vik1 may not be motile. Using a maltose binding protein tagging system, we determined the X-ray crystal structure of the CaKar3 motor domain and observed notable differences in its nucleotide-binding pocket relative to ScKar3 that appear to represent a previously unobserved state of the active site. Together, these studies broaden our knowledge of novel kinesin motor assemblies and shed new light on structurally dynamic regions of Kar3/Vik1-like motor complexes that help mediate mechanical coordination of its subunits.
Resumo:
Kinesins are motor proteins that convert chemical energy from ATP hydrolysis into mechanical energy used to generate force along microtubules, transporting organelles, vesicles, and proteins within the cell. Kar3 kinesins are microtubule minus-end-directed motors with pleiotropic functions in mating and mitosis of budding and fission yeast. In Saccharomyces cerevisiae, Kar3 is multifunctionalized by two non-catalytic companion proteins, Vik1 and Cik1. A Kar3-like kinesin and a single Vik1/Cik1 ortholog are also expressed by the filamentous fungus Ashbya gossypii, which exhibits different nuclear movement challenges and unique microtubule dynamics from its yeast relatives. We hypothesized that these differences in A. gossypii physiology could translate into interesting and novel differences in its versions of Kar3 and Vik1/Cik1. Presented here is a structural and functional analysis of recombinantly expressed and purified forms of these motor proteins. Compared to the previously published S. cerevisiae Kar3 motor domain structure (ScKar3MD), AgKar3MD displays differences in the conformation of the ATPase pocket. Perhaps it is not surprising then that we observed the maximal microtubule-stimulated ATPase rate (kcat) of AgKar3MD to be approximately 3-fold slower than ScKar3MD, and that the affinity of AgKar3MD for microtubules (Kd,MT) was lower than ScKar3MD. This may suggest that elements that compose the ATPase pocket and that participate in conformational changes required for efficient ATP hydrolysis or products release work differently for AgKar3 and ScKar3. There are also subtle structural differences in the disposition of the secondary structural elements in the small lobe (B1a, B1b, and B1c) at the edge of the motor domain of AgKar3 that may reflect the enhanced microtubule-depolymerization activity that we observed for this motor, or they could relate to its interactions with a different regulatory companion protein than its budding yeast counterpart. Although we were unable to gain experimentally determined high-resolution information of AgVik1, the results of Phyre2-based bioinformatics analyses may provide a structural explanation for the limited microtubule-binding activity we observed. These and other fundamental differences in AgKar3/Vik1 could explain divergent functionalities from the ScKar3/Vik1 and ScKar3/Cik1 motor assemblies.
Resumo:
Despite over seven decades of speciation research and 25 years of phylogeographic studies, a comprehensive understanding of mechanisms that generate biological species remains elusive. In temperate zones, the pervasiveness of range fragmentation and subsequent range expansions suggests that secondary contact between diverging lineages may be important in the evolution of species. Thus, such contact zones provide compelling opportunities to investigate evolutionary processes, particularly the roles of geographical isolation in initiating, and indirect selection against hybrids in completing (reinforcement), the evolution of reproductive isolation and speciation. The spring peeper (Pseudacris crucifer) has six well-supported mitochondrial lineages many of which are now in secondary contact. Here I investigate the evolutionary consequences of secondary contact of two such lineages (Eastern and Interior) in Southwestern Ontario using genetic, morphological, acoustical, experimental, and behavioural evidence to show accentuated divergence of the mate recognition system in sympatry. Mitochondrial and microsatellite data distinguish these two lineages but also show ongoing hybridization. Bayesian assignment tests and cline analysis imply asymmetrical introgression of Eastern lineage nuclear markers into Interior populations. Male calls are divergent between Eastern and Interior allopatric populations and show asymmetrical reproductive character displacement in sympatry. Female preference of pure lineage individuals is also exaggerated in sympatry, with hybrids showing intermediate traits and preference. I suggest that these patterns are most consistent with secondary reinforcement. I assessed levels of post-zygotic isolation between the Eastern and Interior lineages using a laboratory hybridization experiment. Hybrid tadpoles showed equal to or greater fitness than their pure lineage counterparts, but this may be countered through competition. More deformities and developmental anomalies in hybrid tadpoles further suggest post-zygotic isolation. Despite evidence for pre-mating isolation between the two lineages, isolation appears incomplete (i.e. hybridization is ongoing). I hypothesize that potentially less attractive hybrids may circumvent female choice by adopting satellite behaviour. Although mating tactics are related to body size, genetic status may play a role. I show that pure Eastern males almost always engage in calling, while hybrids adopt a satellite tactic. An absence of assortative mating, despite evidence of female preference, suggests successful satellite interception possibly facilitating introgression.