2 resultados para Low Cost Level Crossings
em QSpace: Queen's University - Canada
Resumo:
It has been proposed that the field of appropriate technology (AT) - small-scale, energy efficient and low-cost solutions, can be of tremendous assistance in many of the sustainable development challenges, such as food and water security, health, shelter, education and work opportunities. Unfortunately, there has not yet been a significant uptake of AT by organizations, researchers, policy makers or the mainstream public working in the many areas of the development sector. Some of the biggest barriers to higher AT engagement include: 1) AT perceived as inferior or ‘poor persons technology’, 2) questions of technological robustness, design, fit and transferability, 3) funding, 4) institutional support, as well as 5) general barriers associated with tackling rural poverty. With the rise of information and communication technologies (ICTs) for online networking and knowledge sharing, the possibilities to tap into the collaborative open-access and open-source AT are growing, and so is the prospect for collective poverty reducing strategies, enhancement of entrepreneurship, communications, education and a diffusion of life-changing technologies. In short, the same collaborative philosophy employed in the success of open source software can be applied to hardware design of technologies to improve sustainable development efforts worldwide. To analyze current barriers to open source appropriate technology (OSAT) and explore opportunities to overcome such obstacles, a series of interviews with researchers and organizations working in the field of AT were conducted. The results of the interviews confirmed the majority of literature identified barriers, but also revealed that the most pressing problem for organizations and researchers currently working in the field of AT is the need for much better communication and collaboration to share the knowledge and resources and work in partnership. In addition, interviews showcased general receptiveness to the principles of collaborative innovation and open source on the ground level. A much greater focus on networking, collaboration, demand-led innovation, community participation, and the inclusion of educational institutions through student involvement can be of significant help to build the necessary knowledge base, networks and the critical mass exposure for the growth of appropriate technology.
Resumo:
Because of high efficacy, long lifespan, and environment-friendly operation, LED lighting devices become more and more popular in every part of our life, such as ornament/interior lighting, outdoor lightings and flood lighting. The LED driver is the most critical part of the LED lighting fixture. It heavily affects the purchasing cost, operation cost as well as the light quality. Design a high efficiency, low component cost and flicker-free LED driver is the goal. The conventional single-stage LED driver can achieve low cost and high efficiency. However, it inevitably produces significant twice-line-frequency lighting flicker, which adversely affects our health. The conventional two-stage LED driver can achieve flicker-free LED driving at the expenses of significantly adding component cost, design complexity and low the efficiency. The basic ripple cancellation LED driving method has been proposed in chapter three. It achieves a high efficiency and a low component cost as the single-stage LED driver while also obtaining flicker-free LED driving performance. The basic ripple cancellation LED driver is the foundation of the entire thesis. As the research evolving, another two ripple cancellation LED drivers has been developed to improve different aspects of the basic ripple cancellation LED driver design. The primary side controlled ripple cancellation LED driver has been proposed in chapter four to further reduce cost on the control circuit. It eliminates secondary side compensation circuit and an opto-coupler in design while at the same time maintaining flicker-free LED driving. A potential integrated primary side controller can be designed based on the proposed LED driving method. The energy channeling ripple cancellation LED driver has been proposed in chapter five to further reduce cost on the power stage circuit. In previous two ripple cancellation LED drivers, an additional DC-DC converter is needed to achieve ripple cancellation. A power transistor has been used in the energy channeling ripple cancellation LED driving design to successfully replace a separate DC-DC converter and therefore achieved lower cost. The detailed analysis supports the theory of the proposed ripple cancellation LED drivers. Simulation and experiment have also been included to verify the proposed ripple cancellation LED drivers.