2 resultados para Load test on SPT sampler
em QSpace: Queen's University - Canada
Resumo:
The sport of rowing has become more popular in the past decade. While it is a relatively low impact sport, injuries can occur, specifically to the ribs (Karlson K. A., 1998) and more often in female athletes (Hickey, Fricker, & McDonald , 1997). It has been proposed that as the athlete rows, applying a cyclical load to the body, the mid trapezius fatigues and is unable to resist the force produced during the drive phase (Warden S. J., Gutschlag, Wajswelner, & Crossley, 2002). Once this happens, the scapulae are then pulled anterio-laterally which increases the compression force on the ribs, increasing the risk of injury. The rowing motion of 12 female varsity and club rowers was tracked as they completed a fatiguing rowing test on a rowing ergometer. Results showed that the curvature of thoracic spine changed throughout the rowing cycle but did not change with increasing power level. The transverse shoulder angle decreased (the upper back was less straight) as power level increased (R2=-0.69±19), suggesting that the scapula moved anterio-laterally. This may be that as it tired, the mid-trapezius was unable to hold the scapulae in position. The decreasing transverse shoulder angle when the power level is increased indirectly supports the fatiguing of the retractor muscles as a mechanism of injury. It would be valuable to understand the limitations of each athlete and to be able to prescribe the optimal training zone to reduce the risk of injury.
Resumo:
Background: Individuals with chronic obstructive pulmonary disease (COPD) have higher than normal ventilatory equivalents for carbon dioxide (VE/VCO2) during exercise. There is growing evidence that emphysema on thoracic computed tomography (CT) scans is associated with poor exercise capacity in COPD patients with only mild-to-moderate airflow obstruction. We hypothesized that emphysema is an underlying cause of microvascular dysfunction and ventilatory inefficiency, which in turn contributes to reduced exercise capacity. We expected ventilatory inefficiency to be associated with a) the extent of emphysema; b) lower diffusing capacity for carbon monoxide; c) a reduced pulmonary blood flow response to exercise; and d) reduced exercise capacity. Methods: In a cross-sectional study, 19 subjects with mild-to-moderate COPD (mean ± SD FEV1= 82 ± 13% predicted, 12 GOLD grade 1) and 26 age-, sex-, and activity-matched controls underwent a ramp-incremental symptom-limited exercise test on a cycle ergometer. Ventilatory inefficiency was assessed by the minimum VE/VCO2 value (nadir). A subset of subjects also completed repeated constant work rate exercise bouts with non-invasive measurements of pulmonary blood flow. Emphysema was quantified as the percentage of attenuation areas below -950 Housefield Units on CT scans. An electronic scoresheet was used to keep track of emphysema sub-types. Results: COPD subjects typically had centrilobular emphysema (76.8 ± 10.1% of total emphysema) in the upper lobes (upper/lower lobe ratio= 0.82 ± 0.04). They had lower peak oxygen uptake (VO2), higher VE/VCO2 nadir and greater dyspnea scores than controls (p<0.05). Lower peak O2 and worse dyspnea were found in COPD subjects with VE/VCO2 nadirs ≥ 30. COPD subjects had blunted increases in pulmonary blood flow from rest to iso-VO2 exercise (p<0.05). Higher VE/VCO2 nadir in COPD subjects correlated with emphysema severity (r= 0.63), which in turn correlated with reduced lung diffusing capacity (r= -0.72) and blunted changes in pulmonary blood flow from rest to exercise (r= -0.69) (p<0.01). Conclusions: Ventilation “wasted” in emphysematous areas is associated with reduced exercise ventilatory efficiency in mild-to-moderate COPD. Exercise ventilatory inefficiency links structure (emphysema) and function (gas transfer) to a key clinical outcome (reduced exercise capacity) in COPD patients with modest spirometric abnormalities.