2 resultados para Littleleaf disease of pine.
em QSpace: Queen's University - Canada
Resumo:
Recently, a chronic idiopathic disease of the esophagus has emerged, which is now known as eosinophilic esophagitis (EoE). Incomplete knowledge regarding the pathogenesis of EoE has limited treatment options. EoE is known to be a Th2-type immune-mediated disorder. Based on previous studies in both patients and experimental models, it is possible that an abnormal reaction to antigen mediates the pathophysiology of EoE. In this thesis, symptoms and signs unique to EoE were identified by an age-matched, case-controlled study of 326 patients with EoE and gastroesophageal reflux disease. The molecular mechanisms involved in antigen detection in the esophagus, in relation to EoE were then investigated. Esophageal epithelial cells were found, for the first time, to be capable of acting as non-professional antigen presenting cells, with the ability to engulf, process and present antigen on MHC class II to T helper lymphocytes. Antigen presentation by esophageal epithelial cells was induced by interferon-γ, which is increased in biopsies from patients with EoE. Next, it was discovered that esophageal epithelial cell lines expressed functional toll-like receptor (TLR) 2 and TLR3, but in esophageal mucosal biopsies only infiltrating immune cells (including eosinophils) expressed TLR2 and TLR3. Finally, the potential involvement of IgE in the pathogenesis of esophageal inflammation was investigated. IgE in the esophagus was found to be present on mast cells, which are increased in density in the esophageal mucosae of patients with EoE and especially those with a history of atopy. Mechanisms of antigen detection may mediate the pathophysiology of EoE in the esophagus through antigen presentation by epithelial cells, detection by TLRs on immune cells and detection through IgE on mucosal mast cells. Together, these findings demonstrate that mechanisms of antigen detection may actually contribute to the pathophysiology of EoE. Through increased understanding of the mechanisms of EoE, the results of this thesis may contribute to future therapy.
Resumo:
Many dynamical processes are subject to abrupt changes in state. Often these perturbations can be periodic and of short duration relative to the evolving process. These types of phenomena are described well by what are referred to as impulsive differential equations, systems of differential equations coupled with discrete mappings in state space. In this thesis we employ impulsive differential equations to model disease transmission within an industrial livestock barn. In particular we focus on the poultry industry and a viral disease of poultry called Marek's disease. This system lends itself well to impulsive differential equations. Entire cohorts of poultry are introduced and removed from a barn concurrently. Additionally, Marek's disease is transmitted indirectly and the viral particles can survive outside the host for weeks. Therefore, depopulating, cleaning, and restocking of the barn are integral factors in modelling disease transmission and can be completely captured by the impulsive component of the model. Our model allows us to investigate how modern broiler farm practices can make disease elimination difficult or impossible to achieve. It also enables us to investigate factors that may contribute to virulence evolution. Our model suggests that by decrease the cohort duration or by decreasing the flock density, Marek's disease can be eliminated from a barn with no increase in cleaning effort. Unfortunately our model also suggests that these practices will lead to disease evolution towards greater virulence. Additionally, our model suggests that if intensive cleaning between cohorts does not rid the barn of disease, it may drive evolution and cause the disease to become more virulent.