4 resultados para Linear Static Analysis
em QSpace: Queen's University - Canada
Resumo:
This work outlines the theoretical advantages of multivariate methods in biomechanical data, validates the proposed methods and outlines new clinical findings relating to knee osteoarthritis that were made possible by this approach. New techniques were based on existing multivariate approaches, Partial Least Squares (PLS) and Non-negative Matrix Factorization (NMF) and validated using existing data sets. The new techniques developed, PCA-PLS-LDA (Principal Component Analysis – Partial Least Squares – Linear Discriminant Analysis), PCA-PLS-MLR (Principal Component Analysis – Partial Least Squares –Multiple Linear Regression) and Waveform Similarity (based on NMF) were developed to address the challenging characteristics of biomechanical data, variability and correlation. As a result, these new structure-seeking technique revealed new clinical findings. The first new clinical finding relates to the relationship between pain, radiographic severity and mechanics. Simultaneous analysis of pain and radiographic severity outcomes, a first in biomechanics, revealed that the knee adduction moment’s relationship to radiographic features is mediated by pain in subjects with moderate osteoarthritis. The second clinical finding was quantifying the importance of neuromuscular patterns in brace effectiveness for patients with knee osteoarthritis. I found that brace effectiveness was more related to the patient’s unbraced neuromuscular patterns than it was to mechanics, and that these neuromuscular patterns were more complicated than simply increased overall muscle activity, as previously thought.
Resumo:
Modern software applications are becoming more dependent on database management systems (DBMSs). DBMSs are usually used as black boxes by software developers. For example, Object-Relational Mapping (ORM) is one of the most popular database abstraction approaches that developers use nowadays. Using ORM, objects in Object-Oriented languages are mapped to records in the database, and object manipulations are automatically translated to SQL queries. As a result of such conceptual abstraction, developers do not need deep knowledge of databases; however, all too often this abstraction leads to inefficient and incorrect database access code. Thus, this thesis proposes a series of approaches to improve the performance of database-centric software applications that are implemented using ORM. Our approaches focus on troubleshooting and detecting inefficient (i.e., performance problems) database accesses in the source code, and we rank the detected problems based on their severity. We first conduct an empirical study on the maintenance of ORM code in both open source and industrial applications. We find that ORM performance-related configurations are rarely tuned in practice, and there is a need for tools that can help improve/tune the performance of ORM-based applications. Thus, we propose approaches along two dimensions to help developers improve the performance of ORM-based applications: 1) helping developers write more performant ORM code; and 2) helping developers configure ORM configurations. To provide tooling support to developers, we first propose static analysis approaches to detect performance anti-patterns in the source code. We automatically rank the detected anti-pattern instances according to their performance impacts. Our study finds that by resolving the detected anti-patterns, the application performance can be improved by 34% on average. We then discuss our experience and lessons learned when integrating our anti-pattern detection tool into industrial practice. We hope our experience can help improve the industrial adoption of future research tools. However, as static analysis approaches are prone to false positives and lack runtime information, we also propose dynamic analysis approaches to further help developers improve the performance of their database access code. We propose automated approaches to detect redundant data access anti-patterns in the database access code, and our study finds that resolving such redundant data access anti-patterns can improve application performance by an average of 17%. Finally, we propose an automated approach to tune performance-related ORM configurations using both static and dynamic analysis. Our study shows that our approach can help improve application throughput by 27--138%. Through our case studies on real-world applications, we show that all of our proposed approaches can provide valuable support to developers and help improve application performance significantly.
Resumo:
Background: As the global population is ageing, studying cognitive impairments including dementia, one of the leading causes of disability in old age worldwide, is of fundamental importance to public health. As a major transition in older age, a focus on the complex impacts of the duration, timing, and voluntariness of retirement on health is important for policy changes in the future. Longer retirement periods, as well as leaving the workforce early, have been associated with poorer health, including reduced cognitive functioning. These associations are hypothesized to differ based on gender, as well as on pre-retirement educational and occupational experiences, and on post-retirement social factors and health conditions. Methods: A cross-sectional study is conducted to determine the relationship between duration and timing of retirement and cognitive function, using data from the five sites of International Mobility in Aging Study (IMIAS). Cognitive function is assessed using the Leganes Cognitive Test (LCT) scores in 2012. Data are analyzed using multiple linear regressions. Analyses are also done by site/region separately (Canada, Latin America, and Albania). Robustness checks are done with an analysis of cognitive change from 2012 to 2014, the effect of voluntariness of retirement on cognitive function. An instrumental variable (IV) approach is also applied to the cross-sectional and longitudinal analyses as a robustness check to address the potential endogeneity of the retirement variable. Results: Descriptive statistics highlight differences between men and women, as well as between sites. In linear regression analysis, there was no relationship between timing or duration of retirement and cognitive function in 2012, when adjusting for site/region. There was no association between retirement characteristics and cognitive function in site/region/stratified analyses. In IV analysis, longer retirement and on time or late retirement was associated with lower cognitive function among men. In IV analysis, there is no relationship between retirement characteristics and cognitive function among women. Conclusions: While results of the thesis suggest a negative effect of retirement on cognitive function, especially among men, the relationship remains uncertain. A lack of power results in the inability to draw conclusions for site/region-specific analysis and site-adjusted analysis in both linear and IV regressions.
Resumo:
The first objective of this research was to develop closed-form and numerical probabilistic methods of analysis that can be applied to otherwise conventional methods of unreinforced and geosynthetic reinforced slopes and walls. These probabilistic methods explicitly include random variability of soil and reinforcement, spatial variability of the soil, and cross-correlation between soil input parameters on probability of failure. The quantitative impact of simultaneously considering the influence of random and/or spatial variability in soil properties in combination with cross-correlation in soil properties is investigated for the first time in the research literature. Depending on the magnitude of these statistical descriptors, margins of safety based on conventional notions of safety may be very different from margins of safety expressed in terms of probability of failure (or reliability index). The thesis work also shows that intuitive notions of margin of safety using conventional factor of safety and probability of failure can be brought into alignment when cross-correlation between soil properties is considered in a rigorous manner. The second objective of this thesis work was to develop a general closed-form solution to compute the true probability of failure (or reliability index) of a simple linear limit state function with one load term and one resistance term expressed first in general probabilistic terms and then migrated to a LRFD format for the purpose of LRFD calibration. The formulation considers contributions to probability of failure due to model type, uncertainty in bias values, bias dependencies, uncertainty in estimates of nominal values for correlated and uncorrelated load and resistance terms, and average margin of safety expressed as the operational factor of safety (OFS). Bias is defined as the ratio of measured to predicted value. Parametric analyses were carried out to show that ignoring possible correlations between random variables can lead to conservative (safe) values of resistance factor in some cases and in other cases to non-conservative (unsafe) values. Example LRFD calibrations were carried out using different load and resistance models for the pullout internal stability limit state of steel strip and geosynthetic reinforced soil walls together with matching bias data reported in the literature.