2 resultados para Light in art

em QSpace: Queen's University - Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

On the basis of the well-known preservative properties of Sphagnum moss, a potential opportunity to use moss polysaccharides (Sphagnan) in art conservation was tested. Polysaccharides were extracted from the moss (S. palustre spp.) in the amount of 4.1% of the Sphagnum plant dry weight. All lignocelluloses were removed from this extract as a result of the treatment of the moss cellulose with sodium chlorite. The extracted polysaccharide possessed a strong acidic reaction (pH 2.8) and was soluble in water and organic solvents. The extract was tested on laboratory bacterial cultures by the disk-diffusion method. The antibacterial effect was demonstrated for E. coli and P. aeruginosa (both gram-negative) while Staphylococcus aurelus (gram-positive) was shown to be insensitive to Sphagnum polysaccharides. The antifungal effect of Sphagnum extract was tested by the disk-diffusion method on the spores of seventeen fungal species. These fungi were isolated from ethnographic museum objects and from archaeological objects excavated in the Arctic. Twelve of these isolates appeared susceptible to the extract. The inhibiting effect of the extract was also tested by the modified broth-dilution method on the most typical isolate (Aspergillus spp.). In this experiment, in one ml of the nutritious broth, 40µl of 3% solution of polysaccharides in water killed 10,000 fungal spores in 6 hours. The inhibiting effect was not connected to the acidity or osmotic effect of Sphagnum polysaccharides. As an example of the application of Sphagnum polysaccharides in art conservation, they were added as preservative agents to conservation waxes. After three weeks of exposure of microcrystalline wax to test fungi (Aspergillus spp.), 44% of wax was consumed. When, however, ~ 0.1% (w/w) of Sphagnum extract was mixed with wax, the weight loss of wax was only 4% in the same time interval. On the basis of this study it was concluded that Sphagnum moss and Sphagnum products can be recommended for use in art conservation as antifungal agents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main goal of this thesis is to show the versatility of glancing angle deposition (GLAD) thin films in applications. This research is first focused on studying the effect of select deposition variables in GLAD thin films and secondly, to demonstrate the flexibility of GLAD films to be incorporated in two different applications: (1) as a reflective coating in low-level concentration photovoltaic systems, and (2) as an anode structure in dye-sensitized solar cells (DSSC). A particular type of microstructure composed of tilted micro-columns of titanium is fabricated by GLAD. The microstructures form elongated and fan-like tilted micro-columns that demonstrate anisotropic scattering. The thin films texture changes from fiber texture to tilted fiber texture by increasing the vapor incidence angle. At very large deposition angles, biaxial texture forms. The morphology of the thin films deposited under extreme shadowing condition and at high temperature (below recrystallization zone) shows a porous and inclined micro-columnar morphology, resulting from the dominance of shadowing over adatom surface diffusion. The anisotropic scattering behavior of the tilted Ti thin film coatings is quantified by bidirectional reflectance distribution function (BRDF) measurements and is found to be consistent with reflectance from the microstructure acting as an array of inclined micro-mirrors that redirect the incident light in a non-specular reflection. A silver-coating of the surface of the tilted-Ti micro-columns is performed to enhance the total reflectance of the Ti-thin films while keeping the anisotropic scattering behavior. By using such coating is as a booster reflector in a laboratory-scale low-level concentration photovoltaic system, the short-circuit current of the reference silicon solar cell by 25%. Finally, based on the scattering properties of the tilted microcolumnar microstructure, its scattering effect is studied as a part of titanium dioxide microstructure for the anode in DSSCs. GLAD-fabricated TiO2 microstructures for the anode in a DSSC, consisting of vertical micro-columns, and combined vertical topped with tilted micro-columns are compared. The solar cell with the two-part microstructure shows the highest monochromatic incident photon to current efficiency with 20% improvement compared to the vertical microstructure, and the efficiency of the cell increases from 1.5% to 2% due to employing the scattering layer.