8 resultados para Library design
em QSpace: Queen's University - Canada
Resumo:
The development of cost-effective and reliable methods for the synthesis and separation of asymmetric compounds is paramount in helping to meet society’s ever-growing demand for chiral small molecules. Of these methods, chiral heterogeneous supports are particularly appealing as they allow for the reuse of the chiral source. One such support, based on the synergy between chiral organic units and structurally stable inorganic silicon scaffolds are periodic mesoporous organosilicas (PMOs). In the work described herein, I examine some of the factors governing the transmission of chirality between chiral dopants and prochiral bulk phases in chiral PMO materials. In particular, the exploration of 1,1’-binaphthalene-bridged chiral dopants with a focus on the point of attachment into the materials. Moreover, the effects of ordering in the materials are examined and reveal that chirality transfer is more facile in materials with molecular-scale order then those containing amorphous walls. Secondly, the issues surrounding the synthesis and purification of aryl-triethoxysilanes as siloxane precursors are addressed. Both the introduction of a two-carbon linker and the direct attachment of allyl and mixed allyldiethoxysilane species are explored. This work demonstrates that allyldiethoxysilanes are ideal, in that they are stable enough to permit facile synthesis, while still being able to hydrolyze completely to produce well-ordered materials. Lastly, the production of new bulk phases for chiral PMO materials is examined by introducing new prochiral nitrogen-containing siloxane precursors. Biphenyldiamine and bipyridine-bridged siloxane precursors are readily synthesized on reasonable scales. Their use as the bulk siloxane precursor in the production of PMO materials however, is precluded by insufficient gelation and additional siloxane precursors are necessary for the production of ordered materials. In addition to the research detailed above that forms the body of this thesis, two short works are appended. The first details the production of polythiophene assemblies mediated through coordination nanospaces, while the second explores the production of N-heterocyclic carbene functionalized gold nanoparticles through ligand exchange.
Resumo:
Navigation devices used to be bulky and expensive and were not widely commercialized for personal use. Nowadays, all useful electronic devices are turning into being handheld so that they can be conveniently used anytime and anywhere. One can claim that almost any mobile phone, used today, has quite strong navigational capabilities that can efficiently work anywhere in the globe. No matter where you are, you can easily know your exact location and make your way smoothly to wherever you would like to go. This couldn’t have been made possible without the existence of efficient and small microwave circuits responsible for the transmission and reception of high quality navigation signals. This thesis is mainly concerned with the design of novel highly miniaturized and efficient filtering components working in the Global Navigational Satellite Systems (GNSS) frequency band to be integrated within an efficient Radio Frequency (RF) front-end module (FEM). A System-on-Package (SoP) integration technique is adopted for the design of all the components in this thesis. Two novel miniaturized filters are designed, where one of them is a wideband filter targeting the complete GNSS band with a fractional bandwidth of almost 50% at a center frequency of 1.385 GHz. This filter utilizes a direct inductive coupling topology to achieve the required wide band performance. It also has very good out-of-band rejection and low IL. Whereas the other dual band filter will only cover the lower and upper GNSS bands with a rejection notch in between the two bands. It has very good inter band rejection. The well-known “divide and conquer” design methodology was applied for the design of this filter to help save valuable design and optimization time. Moreover, the performance of two commercially available ultra-Low Noise Amplifiers (LNAs) is studied. The complete RF FEM showed promising preliminary performance in terms of noise figure, gain and bandwidth, where it out performed other commercial front-ends in these three aspects. All the designed circuits are fabricated and tested. The measured results are found to be in good agreements with the simulations.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
This thesis presents details of the design and development of novel tools and instruments for scanning tunneling microscopy (STM), and may be considered as a repository for several years' worth of development work. The author presents design goals and implementations for two microscopes. First, a novel Pan-type STM was built that could be operated in an ambient environment as a liquid-phase STM. Unique features of this microscope include a unibody frame, for increased microscope rigidity, a novel slider component with large Z-range, a unique wiring scheme and damping mechanism, and a removable liquid cell. The microscope exhibits a high level of mechanical isolation at the tunnel junction, and operates excellently as an ambient tool. Experiments in liquid are on-going. Simultaneously, the author worked on designs for a novel low temperature, ultra-high vacuum (LT-UHV) instrument, and these are presented as well. A novel stick-slip vertical coarse approach motor was designed and built. To gauge the performance of the motor, an in situ motion sensing apparatus was implemented, which could measure the step size of the motor to high precision. A new driving circuit for stick-slip inertial motors is also presented, that o ffers improved performance over our previous driving circuit, at a fraction of the cost. The circuit was shown to increase step size performance by 25%. Finally, a horizontal sample stage was implemented in this microscope. The build of this UHV instrument is currently being fi nalized. In conjunction with the above design projects, the author was involved in a collaborative project characterizing N-heterocyclic carbene (NHC) self-assembled monolayers (SAMs) on Au(111) films. STM was used to characterize Au substrate quality, for both commercial substrates and those manufactured via a unique atomic layer deposition (ALD) process by collaborators. Ambient and UHV STM was then also used to characterize the NHC/Au(111) films themselves, and several key properties of these films are discussed. During this study, the author discovered an unexpected surface contaminant, and details of this are also presented. Finally, two models are presented for the nature of the NHC-Au(111) surface interaction based on the observed film properties, and some preliminary theoretical work by collaborators is presented.
Resumo:
As the concept of renewable energy becomes increasingly important in the modern society, a considerable amount of research has been conducted in the field of organic photovoltaics in recent years. Although organic solar cells generally have had lower efficiencies compared to silicon solar cells, they have the potential to be mass produced via solution processing. A common polymer solar cell architecture relies on the usage of P3HT (electron donor) and PCBM (electron acceptor) bulk heterojunction. One of the main issues with this configuration is that in order to compensate for the high exciton recombination rate, the photoactive layer is often made very thin (on the order of 100 $%). This results in low solar cell photocurrents due to low absorption. This thesis investigates a novel method of light trapping by coupling surface plasmons at the electrode interface via surface relief gratings, leading to EM field enhancements and increased photo absorption. Experimental work was first conducted on developing and optimizing a transparent electrode of the form &'()/+,/&'() to replace the traditional ITO electrode since the azopolymer gratings cannot withstand the high temperature processing of ITO films. It was determined that given the right thickness profiles and deposition conditions, the MAM stack can achieve transmittance and conductivity similar to ITO films. Experimental work was also conducted on the fabrication and characterization of surface relief gratings, as well as verification of the surface plasmon generation. Surface relief gratings were fabricated easily and accurately via laser interference lithography on photosensitive azopolymer films. Laser diffraction studies confirmed the grating pitch, which is dependent on the incident angle and wavelength of the writing beam. AFM experiments were conducted to determine the surface morphology of the gratings, before and after metallic film deposition. It was concluded that metallic film deposition does not significantly alter the grating morphologies.
Resumo:
As the concept of renewable energy becomes increasingly important in the modern society, a considerable amount of research has been conducted in the field of organic photovoltaics in recent years. Although organic solar cells generally have had lower efficiencies compared to silicon solar cells, they have the potential to be mass produced via solution processing. A common polymer solar cell architecture relies on the usage of P3HT (electron donor) and PCBM (electron acceptor) bulk heterojunction. One of the main issues with this configuration is that in order to compensate for the high exciton recombination rate, the photoactive layer is often made very thin (on the order of 100 $%). This results in low solar cell photocurrents due to low absorption. This thesis investigates a novel method of light trapping by coupling surface plasmons at the electrode interface via surface relief gratings, leading to EM field enhancements and increased photo absorption. Experimental work was first conducted on developing and optimizing a transparent electrode of the form &'()/+,/&'() to replace the traditional ITO electrode since the azopolymer gratings cannot withstand the high temperature processing of ITO films. It was determined that given the right thickness profiles and deposition conditions, the MAM stack can achieve transmittance and conductivity similar to ITO films. Experimental work was also conducted on the fabrication and characterization of surface relief gratings, as well as verification of the surface plasmon generation. Surface relief gratings were fabricated easily and accurately via laser interference lithography on photosensitive azopolymer films. Laser diffraction studies confirmed the grating pitch, which is dependent on the incident angle and wavelength of the writing beam. AFM experiments were conducted to determine the surface morphology of the gratings, before and after metallic film deposition. It was concluded that metallic film deposition does not significantly alter the grating morphologies.
Resumo:
Developmental evaluation (DE) is an evaluation approach that aims to support the development of an innovation (Patton, 1994, 2011). This aim is achieved through supporting clients’ information needs through evaluative inquiry as they work to develop and refine the innovation. While core concepts and principles are beginning to be articulated and refined, challenges remain as to how to focus a developmental evaluation beyond those knowledge frameworks most immediate to clients to support innovation development. Anchoring a DE in knowledge frameworks other than those of the clients might direct attention to issues not yet obvious to clients, but which might further the goal of supporting innovation development if attended to. Drawing concepts and practices from the field of design may be one avenue with which to inform developmental evaluation in achieving its aim. Through a case study methodology, this research seeks to understand the nuances of operationalizing the guiding principles of DE as well as to investigate the utility, feasibility, and consequences of integrating design concepts and practices into developmental evaluation (design-informed developmental evaluation, “DI-DE”). It does so by documenting the efforts of a design-informed developmental evaluator and a task force of educators and researchers in a Faculty of Education as they work to develop a graduate-level education program. A systematic review into those purposeful efforts made to introduce DI-DE thinking into task force deliberations, and an analysis into the responses and consequences of those efforts shed light on what it had meant to practice DI-DE. As a whole, this research on evaluation is intended to further contemporary thinking about the closely coupled relationship between program development and evaluation in complex and dynamic environments.
Resumo:
DNA sequences that are rich in the guanine nucleic base possess the ability to fold into higher order structures called G-quadruplexes. These higher level structures are formed as a result of two sets of four guanine bases hydrogen-bonding together in a planar arrangement called a guanine quartet. Guanine quartets subsequently stack upon each other to form quadruplexes. G-quadruplexes are mainly localized in telomeres as well as in oncogene promoters. One unique and promising therapeutic approach against cancer involves targeting and stabilizing G-quadruplexes with small molecules, generally in order to suppress oncogene expression and telomerase enzyme activity; the latter has been found to contribute to “out-of control” cell growth in ca. 80-85% of all cancer cells and primary tumours while being absent in normal somatic cells. In this work, we present efforts towards designing and synthesizing acridine-based macrocycles (Mh) and (Mb) with the purpose of providing potential G4 ligands that are suited for selective binding to G4 vs. duplex DNA, and stabilize G-quadruplex structures. Two ligands described in this study include an acridine core which provides an aromatic surface capable of π-π interactions with the surface of G-quadruplexes. The successful synthesis of 4,5-diaminoacridine is described in chapter 2, as an essential fragment of the macrocycles (Mh) and (Mb). In order to investigate the synthetic method for macrocyclization, model compounds composing almost half of the designed macrocycles were explored. As discussed in chapter 3, the synthesis of the model compound for (Mb) turned out to be challenging. However, as a step towards the synthesis of (Mh), the synthesis of the hydrogen-containing model compound, which is almost half of the desired macrocycle (Mh) was achieved in our group and proved to be promising.