2 resultados para Iterative power methods
em QSpace: Queen's University - Canada
Resumo:
Due to the growing concerns associated with fossil fuels, emphasis has been placed on clean and sustainable energy generation. This has resulted in the increase in Photovoltaics (PV) units being integrated into the utility system. The integration of PV units has raised some concerns for utility power systems, including the consequences of failing to detect islanding. Numerous methods for islanding detection have been introduced in literature. They can be categorized into local methods and remote methods. The local methods are categorically divided into passive and active methods. Active methods generally have smaller Non-Detection Zone (NDZ) but the injecting disturbances will slightly degrade the power quality and reliability of the power system. Slip Mode Frequency Shift Islanding Detection Method (SMS IDM) is an active method that uses positive feedback for islanding detection. In this method, the phase angle of the converter is controlled to have a sinusoidal function of the deviation of the Point of Common Coupling (PCC) voltage frequency from the nominal grid frequency. This method has a non-detection zone which means it fails to detect islanding for specific local load conditions. If the SMS IDM employs a different function other than the sinusoidal function for drifting the phase angle of the inverter, its non-detection zone could be smaller. In addition, Advanced Slip Mode Frequency Shift Islanding Detection Method (Advanced SMS IDM), which has been introduced in this thesis, eliminates the non-detection zone of the SMS IDM. In this method the parameters of SMS IDM change based on the local load impedance value. Moreover, the stability of the system is investigated by developing the dynamical equations of the system for two operation modes; grid connected and islanded mode. It is mathematically proven that for some loading conditions the nominal frequency is an unstable point and the operation frequency slides to another stable point, while for other loading conditions the nominal frequency is the only stable point of the system upon islanding occurring. Simulation and experimental results show the accuracy of the proposed methods in detection of islanding and verify the validity of the mathematical analysis.
Resumo:
Quantile regression (QR) was first introduced by Roger Koenker and Gilbert Bassett in 1978. It is robust to outliers which affect least squares estimator on a large scale in linear regression. Instead of modeling mean of the response, QR provides an alternative way to model the relationship between quantiles of the response and covariates. Therefore, QR can be widely used to solve problems in econometrics, environmental sciences and health sciences. Sample size is an important factor in the planning stage of experimental design and observational studies. In ordinary linear regression, sample size may be determined based on either precision analysis or power analysis with closed form formulas. There are also methods that calculate sample size based on precision analysis for QR like C.Jennen-Steinmetz and S.Wellek (2005). A method to estimate sample size for QR based on power analysis was proposed by Shao and Wang (2009). In this paper, a new method is proposed to calculate sample size based on power analysis under hypothesis test of covariate effects. Even though error distribution assumption is not necessary for QR analysis itself, researchers have to make assumptions of error distribution and covariate structure in the planning stage of a study to obtain a reasonable estimate of sample size. In this project, both parametric and nonparametric methods are provided to estimate error distribution. Since the method proposed can be implemented in R, user is able to choose either parametric distribution or nonparametric kernel density estimation for error distribution. User also needs to specify the covariate structure and effect size to carry out sample size and power calculation. The performance of the method proposed is further evaluated using numerical simulation. The results suggest that the sample sizes obtained from our method provide empirical powers that are closed to the nominal power level, for example, 80%.