3 resultados para Internet in education -- Cross-cultural studies -- Congresses.
em QSpace: Queen's University - Canada
Resumo:
Preeclampsia (PE) is a pregnancy complication that is new-onset of hypertension and proteinuria after 20 weeks of gestation. However, subclinical renal dysfunction may be apparent earlier in gestation prior to the clinical presentation of PE. Although the maternal syndrome of PE resolves early postpartum, women with a history of PE are at higher risk of renal dysfunction later in life. Mineral metabolism, such as phosphate balance is heavily dependent on renal function, yet, phosphate handling in women with a history of PE is largely unknown. To investigate whether women with a history of PE would exhibit changes in phosphate metabolism compared to healthy parous women, phosphate loading test was used. Women with or without a history of PE, who were 6 months to 5 years postpartum, were recruited for this study. Blood and urine samples were collected before and after the oral dosing of 500mg phosphate solution. Biochemical markers of phosphate metabolism and renal function were evaluated. In order to assess the difference in renal function alteration between first trimester women who were or were not destined to develop PE, plasma cystatin C concentration was analysed. After phosphate loading, women with a history of PE had significantly elevated serum phosphate at both 1- and 2-hour, while controls had higher urine phosphate:urine creatinine excretion ratio at 1-hour than women with a history of PE. Women with a history of PE had no changes in intact parathyroid hormone (iPTH) concentration throughout the study period, whereas controls had elevated iPTH at 1-hour from baseline. In terms of renal function in the first trimester, there was no difference in plasma cystatin C concentration between women who were or were not destined to develop PE. The elevation of serum phosphate in women with a history of PE could be due to the delay in phosphate excretion. Prolong elevation of serum phosphate can have serious consequences later in life. Thus, oral phosphate challenge may serve as a useful method of early screening for altered phosphate metabolism and renal function.
Resumo:
Preeclampsia (PE) is a pregnancy complication that is new-onset of hypertension and proteinuria after 20 weeks of gestation. However, subclinical renal dysfunction may be apparent earlier in gestation prior to the clinical presentation of PE. Although the maternal syndrome of PE resolves early postpartum, women with a history of PE are at higher risk of renal dysfunction later in life. Mineral metabolism, such as phosphate balance is heavily dependent on renal function, yet, phosphate handling in women with a history of PE is largely unknown. To investigate whether women with a history of PE would exhibit changes in phosphate metabolism compared to healthy parous women, phosphate loading test was used. Women with or without a history of PE, who were 6 months to 5 years postpartum, were recruited for this study. Blood and urine samples were collected before and after the oral dosing of 500mg phosphate solution. Biochemical markers of phosphate metabolism and renal function were evaluated. In order to assess the difference in renal function alteration between first trimester women who were or were not destined to develop PE, plasma cystatin C concentration was analysed. After phosphate loading, women with a history of PE had significantly elevated serum phosphate at both 1- and 2-hour, while controls had higher urine phosphate:urine creatinine excretion ratio at 1-hour than women with a history of PE. Women with a history of PE had no changes in intact parathyroid hormone (iPTH) concentration throughout the study period, whereas controls had elevated iPTH at 1-hour from baseline. In terms of renal function in the first trimester, there was no difference in plasma cystatin C concentration between women who were or were not destined to develop PE. The elevation of serum phosphate in women with a history of PE could be due to the delay in phosphate excretion. Prolong elevation of serum phosphate can have serious consequences later in life. Thus, oral phosphate challenge may serve as a useful method of early screening for altered phosphate metabolism and renal function.
Resumo:
Multiple lines of evidence suggest that elevated plasma lipoprotein(a) (Lp(a)) concentrations are a significant risk factor for the development of a number of vascular diseases including coronary heart disease and stroke. Lp(a) consists of a low-density lipoprotein (LDL)-like moiety and an unique glycoprotein, apolipoprotein(a) (apo(a)), that is covalently attached to the apolipoproteinB-100 (apoB-100) component of LDL by a single disulfide bond. Many studies have suggested a role for Lp(a) in the process of endothelial dysfunction. Indeed, Lp(a) has been shown to increase both the expression of adhesion molecules on endothelial cells (EC), as well as monocyte and leukocyte chemotactic activity in these cells. We have previously demonstrated that Lp(a), through its apo(a) moiety, increases actomyosin-driven EC contraction which, as a consequence, increases EC permeability. In this thesis, we have demonstrated a role for the strong lysine-binding site in the kringle IV type 10 domain of apo(a) in increasing EC permeability, which occurs through a Rho/Rho kinase-dependent pathway. We have further validated these findings using mouse mesenteric arteries in a pressure myograph system. We also have dissected another major signaling pathway initiated by apo(a) that involves in a disruption of adherens junctions in EC. In this pathway, apo(a)/Lp(a) activates the PI3K/Akt/GSK3β-dependent pathway to facilitate nuclear translocation of beta-catenin. In the nucleus beta-catenin induced the expression of cyclooxygenase-2 (COX-2) and the secretion of prostaglandin E2 (PGE2) from the EC. Finally, we have presented data to suggest a novel inflammatory role for apo(a) in which it induces the activation of nuclear factor-kappaB through promotion of the dissociation of IkappaB from the inactive cytoplasmic complex; this allows the nuclear translocation of NFkappaB with attendant effects on the transcription of pro-inflammatory genes. Taken together, our findings may facilitate the development of new drug targets for mitigating the harmful effects of Lp(a) on vascular EC which corresponds to an early step in the process of atherogenesis.