3 resultados para Incrémentalisme disjoint

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the Dirichlet to Neumann operator for the Riemannian wave equation on a compact Riemannian manifold. If the Riemannian manifold is modelled as an elastic medium, this operator represents the data available to an observer on the boundary of the manifold when the manifold is set into motion through boundary vibrations. We study the Dirichlet to Neumann operator when vibrations are imposed and data recorded on disjoint sets, a useful setting for applications. We prove that this operator determines the Dirichlet to Neumann operator where sources and observations are on the same set, provided a spectral condition on the Laplace-Beltrami operator for the manifold is satisfied. We prove this by providing an implementable procedure for determining a portion of the Riemannian manifold near the area where sources are applied. Drawing on established results, an immediate corollary is that a compact Riemannian manifold can be reconstructed from the Dirichlet to Neumann operator where sources and observations are on disjoint sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the Dirichlet to Neumann operator for the Riemannian wave equation on a compact Riemannian manifold. If the Riemannian manifold is modelled as an elastic medium, this operator represents the data available to an observer on the boundary of the manifold when the manifold is set into motion through boundary vibrations. We study the Dirichlet to Neumann operator when vibrations are imposed and data recorded on disjoint sets, a useful setting for applications. We prove that this operator determines the Dirichlet to Neumann operator where sources and observations are on the same set, provided a spectral condition on the Laplace-Beltrami operator for the manifold is satisfied. We prove this by providing an implementable procedure for determining a portion of the Riemannian manifold near the area where sources are applied. Drawing on established results, an immediate corollary is that a compact Riemannian manifold can be reconstructed from the Dirichlet to Neumann operator where sources and observations are on disjoint sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that a random Hilbert scheme that parametrizes the closed subschemes with a fixed Hilbert polynomial in some projective space is irreducible and nonsingular with probability greater than $0.5$. To consider the set of nonempty Hilbert schemes as a probability space, we transform this set into a disjoint union of infinite binary trees, reinterpreting Macaulay's classification of admissible Hilbert polynomials. Choosing discrete probability distributions with infinite support on the trees establishes our notion of random Hilbert schemes. To bound the probability that random Hilbert schemes are irreducible and nonsingular, we show that at least half of the vertices in the binary trees correspond to Hilbert schemes with unique Borel-fixed points.