2 resultados para Inconsistency
em QSpace: Queen's University - Canada
Resumo:
Electron beam lithography (EBL) and focused ion beam (FIB) methods were developed in house to fabricate nanocrystalline nickel micro/nanopillars so to compare the effect of fabrication on plastic yielding. EBL was used to fabricate 3 μm and 5 μm thick poly-methyl methacrylate patterned substrates in which nickel pillars were grown by electroplating with height to diameter aspect ratios from 2:1 to 5:1. FIB milling was used to reduce larger grown pillars to sizes similar to EBL grown pillars. X-ray diffraction, electron back-scatter diffraction, scanning electron microscopy, and FIB imaging were used to characterize the nickel pillars. The measured grain size of the pillars was 91±23 nm, with strong <110> and weaker <111> and <110> crystallographic texture in the growth. Load-controlled compression tests were conducted using a MicroMaterials nano-indenter equipped with a 10 μm flat punch at constant rates from 0.0015 to 0.03 mN/s on EBL grown pillars, and 0.0015 and 0.015 mN/s on FIB-milled pillars. The measured Young’s modulus ranged from 55 to 350 GPa for all pillars, agreeing with values in the literature. EBL grown pillars exhibited stochastic strain-bursts at slow loading rates, attributed to local micro yield events, followed by work hardening. Sharp yield points were also observed and attributed to the gold seed layer de-bonding between the nickel pillar and substrate due to the shear stress associated with end effects that arise from the substrate constraint. The onset of yield ranged from 108 to 1800 MPa, which is greater than bulk nickel, but within values given in the literature. FIB-milled pillars demonstrated stochastic yield behaviour at all loading rates tested, yielding between 320 and 625 MPa. Deformation was apparent at FIB-milled pillar tops, where the smallest cross-sectional area was measured, but still exhibited superior yield strength to bulk nickel. The gallium damage at the outer surface of the pillars likely aids in dislocation nucleation and plasticity, leading to lower yield strengths than for the EBL pillars. Thermal drift, substrate effects, and noise due to vibrations within the indenter system contributed to variance and inconsistency in the data.
Resumo:
Larger lineups could protect innocent suspects from being misidentified; however, they can also decrease correct identifications. Bertrand (2006) investigated whether the decrease in correct identifications could be prevented by adding more cues, in the form of additional views of lineup members’ faces, to the lineup. Adding these cues was successful to an extent. The current series of studies attempted to replicate Bertrand’s (2006) findings while addressing some methodological issues—namely, the inconsistency in image size as lineup size increased. First, I investigated whether image size could affect face recognition (Chapter 2) and found it could, but that it also affected previously-seen (“old”) versus previously-unseen (“new”) faces differently. Specifically, smaller image sizes at exposure lowered accuracy for old faces, while these same image sizes at recognition lowered accuracy for new faces. Although these results indicate that target recognition would be unaffected by image size at recognition (i.e., during a lineup), lineups are also comprised of previously-unseen faces, in the form of fillers and innocent suspects. Because image size could affect lineup decisions, as it could become more difficult to realize fillers are previously-unseen, I decided to replicate Bertrand (2006) while keeping image size constant in Chapters 3 (simultaneous lineups) and 4 (simultaneous-presentation, sequential decisions). In both Chapters, the integral findings were the same: correct identification rates decreased as lineup size increased from 6- to 24-person lineups, but adding cues had no effect. The inability to replicate Bertrand (2006) could mean that the original finding was due to chance, but alternate explanations also exist, such as the overall size of the array, the degree to which additional cues overlap, and the length of the target exposure. These alternate explanations, along with directions for future research, are discussed in the following Chapters.