2 resultados para Impacts of a warming Arctic

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithium is used in the cathode and electrolyte of rechargeable batteries in many portable electronics and electric vehicles, and is thus seen as a critical component of modern technology (Gruber et al., 2011). Electric vehicles are promoted as a way to reduce carbon emissions associated with the transportation sector, which accounts for 14.3% of anthropogenic greenhouse gas emissions (OECD International Transport Forum, 2010). However, the sustainability of lithium procurement will influence the overall environmental impact of this proposed “green” solution. It is estimated that 66% of the world’s lithium resource is contained in natural brines, 24% in pegmatites, and 8% in sedimentary rocks such as hectorite clays (Gruber et al., 2011). It has been shown that “[r]ecycling of lithium from Li-ion batteries may be a critical factor in balancing the supply of lithium with future demand” (Gruber et al., 2011). In an attempt to quantify energy and materials consumption associated with production of a unit of useful lithium compounds, industry reports and peer-reviewed scientific literature concerning lithium mining and lithium recycling were reviewed and compared. Other aspects of sustainability, such as waste or by-products produced in the production of a unit of useful lithium, were also explored. Thus, this paper will serve to further the evaluation of the comparative environmental consequences associated with lithium production via extraction versus recycling. Efficiencies must be made in both processes to maximize productivity while minimizing ecological harm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate warming is predicted to increase summer air temperatures in the Arctic, warming soils and enhancing microbial decomposition of soil organic matter. Given the size of the soil carbon stores in the Arctic, even a fraction of its release as CO2 to the atmosphere could result in a positive feedback to climate warming. Fertilizers have been used in the past to quickly increase soil solution nutrients pools to mimic predicted concentrations under climate warming. However, because it may have inadvertent affects on the soil microbial community, fertilizer-induced patterns in microbial decomposition may be unrealistic. This study aimed to better understand the proposed mechanism of enhanced microbial decomposition under nutrient addition and warming treatments to discern whether warming alone is enough to stimulate enhanced microbial decomposition, or if nutrients in excess (i.e. chronic high nutrient additions) are necessary to yield such a response. I investigated the impacts of 10 years of greenhouse summer warming, chronic low nutrient factorial addition (5 g N and 1g P m-2 year-1, respectively), and chronic high nutrient factorial addition (10 g N and 5g P m-2 year-1, respectively) treatments on a mesic birch hummock tundra ecosystem near Daring Lake, NWT, Canada. Soil microbial nutrient pools, soil solution nutrient pools, and microbial community structure were measured in the upper organic, lower organic, and uppermost mineral soil depth intervals of all treatment plots in Spring 2014. Interestingly, the low nutrient additions did not yield any significant trends, yet the warming treatment increased soil bacterial richness suggesting a legacy effect of warming from the previous summers. Enhanced microbial nutrient uptake occurred only in the high nutrient addition treatments, and did not significantly alter soil carbon at least within the ten year period of this experiment. Together, these results and the absence of significant impacts of the low nutrient and greenhouse warming treatments suggests that nutrient and carbon cycling in these low arctic soils may be resilient against climate warming, at least over the initial decades.