2 resultados para Immunosuppressive agents therapeutic use

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pre-eclampsia (PE) is a pregnancy disorder that affects roughly 5-7% of all pregnancies and is a leading cause of both maternal and fetal/neonatal morbidity and mortality. With no present cure for the disease, researchers are interested in the lower incidence of PE observed among the cigarette smoking pregnant population. However, women who use smokeless tobacco do not experience the same decreased incidence of PE, leading to hypothesis of protection against PE from the largest combustible product of cigarette smoke, carbon monoxide (CO). Studies evaluated levels of CO in PE women and found that they were statistically lower than those of healthy pregnancy. Researchers have found CO to possess many cytoprotective and regulatory properties and specifically within the placenta, it has been found to increase perfusion pressure, decrease oxidative stress, decreases ischemia/reperfusion induced apoptosis and maintain endothelial functioning. The idea for use of CO as a possible therapeutic for PE has thus become a real possibility. This study determined CO levels in pregnant women ± smoking as well as in PE women±smoking, as to discover a possible therapeutic range for future treatments. The best correlated automated CO measurement device with blood CO levels was determined, for use in future clinical studies. This thesis also sought a possible CO delivery concentration, in order to achieve the CO levels observed in the human correlation study. A threshold level of maternal CO exposure in a murine animal model was found, for which fetal and maternal negative toxicities were not observed. The results of this thesis lend a few more pieces to the complicated puzzle involving CO and PE and offer another step toward the possibility of a therapeutic treatment/prevention using this gaseous molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of tumour cells to avoid immune destruction (immune escape) and their acquired resistance to anti-cancer drugs constitute important barriers to the successful management of cancer. The interaction between specific molecules on the surface of tumour cells with their corresponding receptors on immune effector cells can result in inhibition of these effector cells, consequently allowing tumour cells to evade the host’s anti-tumour immune response. The interaction of the Programmed Death Ligand 1 (PD-L1) on the surface of tumour cells with the Programmed Death-1 (PD-1) receptor on cytotoxic T lymphocytes leads to inactivation of these immune effectors, and is a specific example of an immune escape mechanism tumour cells use to avoid immune destruction. Clinically, antibodies capable of blocking the PD-1/PD-L1 interaction have demonstrated significant therapeutic benefit, and are currently being used to help bolster patients’ immune response against malignant cells in a variety of cancer types. Here we show that the PD-1/PD-L1 interaction also leads to tumour cell resistance to conventional chemotherapeutic agents. Incubation of PD-L1-expressing human and mouse tumour cells with PD-1-expressing Jurkat T cells or purified recombinant PD-1 resulted in tumour cell resistance to doxorubicin and docetaxel. Interference with the PD-1/PD-L1 interaction using blocking anti-PD-1 or anti-PD-L1 antibody or shRNA-mediated gene silencing resulted in attenuation of PD-1/PD-L1-mediated drug resistance. Moreover, inhibition of the PD-1/PD-L1 signalling axis using anti-PD-1 antibody enhanced the effect of doxorubicin chemotherapy to inhibit 4T1 tumour cell metastasis in an in vivo mouse model of mammary carcinoma. These findings indicate that blockade of the PD-1/PD-L1 axis may be a useful approach to immunosensitize and chemosensitize tumours in cancer patients and provide a rationale for the use of anti-PD-1/PD-L1 antibodies as adjuvants to chemotherapy.