3 resultados para Hypothalamus-pituitary-adrenal axis

em QSpace: Queen's University - Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small proline-rich protein-2 (SPRR2) functions as a determinant of flexibility and permeability in the mature cornified envelope of the skin. SPRR2 is strongly upregulated by the commensal flora and may mediate signaling to differentiated epithelia of the small intestine and colon. Yet, SPRR2 function in the GI tract is largely unexplored. Using the Caco-2 model of intestinal epithelial differentiation along the crypt-villus axis, we hypothesized that SPRR2 would be preferentially expressed in post-confluent differentiated Caco-2 cells and examined SPRR2 regulation by the protein kinase A pathway (PKA) and short chain fatty acids (SCFAs). Differentiation-dependent SPRR2 expression was examined in cytoskeletal-, membrane-, and nuclear-enriched fractions by immunoblotting and confocal immunofluorescence. We studied the effect of SCFAs, known inducers of differentiation, on SPRR2 expression in pre-confluent undifferentiated Caco-2 cells and explored potential mechanisms involved in this induction using MAP kinase inhibitors. SPRR2 expression was also compared between HIEC crypt cells and 16 to 20 week primary fetal villus cells as well as in different segments in mouse small intestine and colon. We determined if SPRR2 is increased by gram negative bacteria such as S. typhimurium. SPRR2 expression increased in a differentiation-dependent manner in Caco-2 cells and was present in human fetal epithelial villus cells but absent in HIEC crypt cells. Differentiation-induced SPRR2 was down-regulated by 8-Br-cAMP as well as by forskolin/IBMX co-treatment. SPRR2 was predominantly cytoplasmic and did not accumulate in Triton X-100-insoluble cytoskeletal fractions. SPRR2 was present in the membrane- and nuclear-enriched fractions and demonstrated co-localization with F-actin at the apical actin ring. No induction was seen with the specific HDAC inhibitor trichostatin A, while SCFAs and the HDAC inhibitor SBHA all induced SPRR2. SCFA responses were inhibited by MAP kinase inhibitors SB203580 and U0126, thus suggesting that the SCFA effect may be mediated by orphan G-protein receptors GPR41 and GPR43. S. typhimurium induced SPRR2 in undifferentiated cells. We conclude that SPRR2 protein expression is associated with differentiated epithelia and is regulated by PKA signaling and by by-products of the bowel flora. This is the first report to establish an in vitro model to study the physiology and regulation of SPRR2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of tumour cells to avoid immune destruction (immune escape) and their acquired resistance to anti-cancer drugs constitute important barriers to the successful management of cancer. The interaction between specific molecules on the surface of tumour cells with their corresponding receptors on immune effector cells can result in inhibition of these effector cells, consequently allowing tumour cells to evade the host’s anti-tumour immune response. The interaction of the Programmed Death Ligand 1 (PD-L1) on the surface of tumour cells with the Programmed Death-1 (PD-1) receptor on cytotoxic T lymphocytes leads to inactivation of these immune effectors, and is a specific example of an immune escape mechanism tumour cells use to avoid immune destruction. Clinically, antibodies capable of blocking the PD-1/PD-L1 interaction have demonstrated significant therapeutic benefit, and are currently being used to help bolster patients’ immune response against malignant cells in a variety of cancer types. Here we show that the PD-1/PD-L1 interaction also leads to tumour cell resistance to conventional chemotherapeutic agents. Incubation of PD-L1-expressing human and mouse tumour cells with PD-1-expressing Jurkat T cells or purified recombinant PD-1 resulted in tumour cell resistance to doxorubicin and docetaxel. Interference with the PD-1/PD-L1 interaction using blocking anti-PD-1 or anti-PD-L1 antibody or shRNA-mediated gene silencing resulted in attenuation of PD-1/PD-L1-mediated drug resistance. Moreover, inhibition of the PD-1/PD-L1 signalling axis using anti-PD-1 antibody enhanced the effect of doxorubicin chemotherapy to inhibit 4T1 tumour cell metastasis in an in vivo mouse model of mammary carcinoma. These findings indicate that blockade of the PD-1/PD-L1 axis may be a useful approach to immunosensitize and chemosensitize tumours in cancer patients and provide a rationale for the use of anti-PD-1/PD-L1 antibodies as adjuvants to chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brain derived neurotrophic factor (BDNF) is a member of the family of neurotrophins and binds to the tropomyosin-related kinase B (TrkB) receptor. Like other neurotrophic factors, BDNF is involved in the development and differentiation of neurons. Recently, studies have suggested important roles for BDNF in the regulation of energy homeostasis. The paraventricular nucleus (PVN) is critical for normal energy balance contains high levels of both BDNF and TrkB mRNA. Studies have shown that microinjections of BDNF into the PVN increase energy expenditure, suggesting BDNF plays a role in energy homeostasis through direct actions in this hypothalamic nucleus. We used male Sprague-Dawley rats to perform whole-cell current-clamp experiments from PVN neurons in slice preparation. BDNF was bath applied at a concentration of 2nM and caused depolarizations in 54% of neurons (n = 25; mean change in membrane potential: 8.9 ± 1.2 mV), hyperpolarizations in 23% (n = 11; mean change in membrane potential: -6.7 ± 1.4 mV), while the remaining cells tested were unaffected. Previous studies showing effects of BDNF on γ-aminobutyric acid type A (GABAA) mediated neurotransmission in PVN led us to examine if these BDNF-mediated changes in membrane potential were maintained in the presence of tetrodotoxin (TTX) sodium channel blocker (N = 9; 56% depolarized, 22% hyperpolarized, 22% non-responders) and bicuculline (GABAA antagonist) (N = 12; 42% depolarized, 17% hyperpolarized, 41% non-responders), supporting the conclusion that these effects on membrane potential were postsynaptic. We also evaluated the effects of BDNF on these neurons across varying physiologically relevant extracellular glucose concentrations. At 10 mM 23% (n = 11; mean: -6.7 ± 1.4 mV) of PVN neurons hyperpolarized in response to BDNF treatment, whereas at 0.2 mM glucose, 71% showed hyperpolarizing effects (n = 12; mean: -6.3 ± 2.8 mV). Our findings reveal that BDNF has direct impacts on PVN neurons and that these neurons are capable of integrating multiple sources of metabolically relevant input. Our analysis regarding glucose concentrations and their effects on these neurons’ response to other metabolic signals emphasizes the importance of using physiologically relevant conditions for study of central pathways involved in the regulation of energy homeostasis.