2 resultados para High yield

em QSpace: Queen's University - Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Tribbles Homologues are a family of three eukaryotic pseudokinases (Trb1, Trb2, Trb3) that act as allosteric inhibitors and regulatory scaffold sites in pathways governing adipogenesis, cell proliferation and insulin signaling. The Tribbles Homologues have the same overall tertiary structure of the eukaryotic protein kinase domain, but lack multiple residues necessary to catalysis in the nucleotide-binding P-loop and the Mg2+-coordinating DFG motif. Trb1 has been shown conclusively to be incapable of binding ATP, whereas a recent study presents evidence that Trb2 autophosphorylates independently of Mg2+ in vitro. This finding is surprising given the high degree of sequence similarity between the two proteins (71%), and suggests unique nucleotide binding and phosphotransfer mechanisms. The goal of this project was to investigate whether Trb2 possesses kinase activity or not and determine its structural basis. A method for the high-yield recombinant expression and purification of stable Trb2 was developed. Trb2 nucleotide binding and autophosphorylation could not be detected across multiple experimental approaches, including thermal shift assays, MANT-ATP fluorescence, radiolabeled phosphate incorporation, and nonspecific ATPase activity assays. Further characterization also revealed that Trb2 forms homomultimers with possible functional consequences, and extensive crystallization screening has yielded multiple promising conditions that could produce diffraction-quality crystals with further optimization. This project explores the difficulties in functionally characterizing putatively active pseudokinases, and proposes a structural basis for the conserved pseudokinase features of the Tribbles homologues.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Climate warming is predicted to increase summer air temperatures in the Arctic, warming soils and enhancing microbial decomposition of soil organic matter. Given the size of the soil carbon stores in the Arctic, even a fraction of its release as CO2 to the atmosphere could result in a positive feedback to climate warming. Fertilizers have been used in the past to quickly increase soil solution nutrients pools to mimic predicted concentrations under climate warming. However, because it may have inadvertent affects on the soil microbial community, fertilizer-induced patterns in microbial decomposition may be unrealistic. This study aimed to better understand the proposed mechanism of enhanced microbial decomposition under nutrient addition and warming treatments to discern whether warming alone is enough to stimulate enhanced microbial decomposition, or if nutrients in excess (i.e. chronic high nutrient additions) are necessary to yield such a response. I investigated the impacts of 10 years of greenhouse summer warming, chronic low nutrient factorial addition (5 g N and 1g P m-2 year-1, respectively), and chronic high nutrient factorial addition (10 g N and 5g P m-2 year-1, respectively) treatments on a mesic birch hummock tundra ecosystem near Daring Lake, NWT, Canada. Soil microbial nutrient pools, soil solution nutrient pools, and microbial community structure were measured in the upper organic, lower organic, and uppermost mineral soil depth intervals of all treatment plots in Spring 2014. Interestingly, the low nutrient additions did not yield any significant trends, yet the warming treatment increased soil bacterial richness suggesting a legacy effect of warming from the previous summers. Enhanced microbial nutrient uptake occurred only in the high nutrient addition treatments, and did not significantly alter soil carbon at least within the ten year period of this experiment. Together, these results and the absence of significant impacts of the low nutrient and greenhouse warming treatments suggests that nutrient and carbon cycling in these low arctic soils may be resilient against climate warming, at least over the initial decades.