2 resultados para Hierarchical dynamic models
em QSpace: Queen's University - Canada
Resumo:
Stroke is a leading cause of death and permanent disability worldwide, affecting millions of individuals. Traditional clinical scores for assessment of stroke-related impairments are inherently subjective and limited by inter-rater and intra-rater reliability, as well as floor and ceiling effects. In contrast, robotic technologies provide objective, highly repeatable tools for quantification of neurological impairments following stroke. KINARM is an exoskeleton robotic device that provides objective, reliable tools for assessment of sensorimotor, proprioceptive and cognitive brain function by means of a battery of behavioral tasks. As such, KINARM is particularly useful for assessment of neurological impairments following stroke. This thesis introduces a computational framework for assessment of neurological impairments using the data provided by KINARM. This is done by achieving two main objectives. First, to investigate how robotic measurements can be used to estimate current and future abilities to perform daily activities for subjects with stroke. We are able to predict clinical scores related to activities of daily living at present and future time points using a set of robotic biomarkers. The findings of this analysis provide a proof of principle that robotic evaluation can be an effective tool for clinical decision support and target-based rehabilitation therapy. The second main objective of this thesis is to address the emerging problem of long assessment time, which can potentially lead to fatigue when assessing subjects with stroke. To address this issue, we examine two time reduction strategies. The first strategy focuses on task selection, whereby KINARM tasks are arranged in a hierarchical structure so that an earlier task in the assessment procedure can be used to decide whether or not subsequent tasks should be performed. The second strategy focuses on time reduction on the longest two individual KINARM tasks. Both reduction strategies are shown to provide significant time savings, ranging from 30% to 90% using task selection and 50% using individual task reductions, thereby establishing a framework for reduction of assessment time on a broader set of KINARM tasks. All in all, findings of this thesis establish an improved platform for diagnosis and prognosis of stroke using robot-based biomarkers.
Resumo:
Bridges are a critical part of North America’s transportation network that need to be assessed frequently to inform bridge management decision making. Visual inspections are usually implemented for this purpose, during which inspectors must observe and report any excess displacements or vibrations. Unfortunately, these visual inspections are subjective and often highly variable and so a monitoring technology that can provide quantitative measurements to supplement inspections is needed. Digital Image Correlation (DIC) is a novel monitoring technology that uses digital images to measure displacement fields without any contact with the bridge. In this research, DIC and accelerometers were used to investigate the dynamic response of a railway bridge reported to experience large lateral displacements. Displacements were estimated using accelerometer measurements and were compared to DIC measurements. It was shown that accelerometers can provide reasonable estimates of displacement for zero-mean lateral displacements. By comparing measurements in the girder and in the piers, it was shown that for the bridge monitored, the large lateral displacements originated in the steel casting bearings positioned above the piers, and not in the piers themselves. The use of DIC for evaluating the effectiveness of rehabilitation of the LaSalle Causeway lift bridge in Kingston, Ontario was also investigated. Vertical displacements were measured at midspan and at the lifting end of the bridge during a static test and under dynamic live loading. The bridge displacements were well within the operating limits, however a gap at the lifting end of the bridge was identified. Rehabilitation of the bridge was conducted and by comparing measurements before and after rehabilitation, it was shown that the gap was successfully closed. Finally, DIC was used to monitor the midspan vertical and lateral displacements in a monitoring campaign of five steel rail bridges. DIC was also used to evaluate the effectiveness of structural rehabilitation of the lateral bracing of a bridge. Simple finite element models are developed using DIC measurements of displacement. Several lessons learned throughout this monitoring campaign are discussed in the hope of aiding future researchers.