2 resultados para Herpes simplex virus 1

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The herpes simplex virus (HSV) UL31 gene encodes a conserved member of the herpesvirus nuclear egress complex that not only functions in the egress of DNA-containing capsids from the nucleus, but is also required for optimal viral genome expression, replication and packaging into capsids. Here, we report that the UL31 protein from HSV-2 and the orthologous protein, ORF69, from Kaposi's sarcoma-associated herpesvirus (KSHV) are recruited to sites of DNA damage. Recruitment of UL31 to sites of DNA damage occurred in HSV-2 infected cells, but did not require other viral proteins. The N-terminus of UL31 contains sequences resembling a poly(ADP-ribose) (PAR) binding motif. As protein poly-ADP ribosylation (PARylation) is a hallmark of the DNA damage response we examined the relationship between PARylation and UL31 recruitment to DNA damage. While the PAR polymerase (PARP)1/2 inhibitor, olaparib, prevented UL31 recruitment to damaged DNA, KU55933 inhibition of signaling through the ataxia telangiectasia mutated (ATM) DNA damage response pathway had no effect. These findings were further supported by experiments demonstrating direct and specific interaction between HSV-2 UL31 and PAR using purified components. Co-transfection with the viral kinase Us3, known to phosphorylate UL31, inhibited UL31 recruitment to DNA damage but also prevented the recruitment of other proteins recruited to DNA damage sites. The viral E3 ubiquitin ligase ICP0 was observed to co-localize with UL31 in transfected cells in a manner that is independent of the PAR-binding ability of UL31. However, inhibition of PARP1/2/3 did not reduce the ability of HSV-2 to replicate and we observed reduced PAR levels in the nuclei of infected cells. This study reveals a previously unrecognized function for UL31 orthologs and may suggest that the recognition of PAR by UL31 is coupled to the nuclear egress of herpesvirus capsids, influences viral DNA replication and packaging, or possibly modulates the DNA damage response mounted by virally infected cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biologically active 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) binds the vitamin D receptor (VDR) to exert its effect on target cells. VDR expression is found in a number of immune cells including professional antigen-presenting cells such as dendritic cells. It has been found that the actions of 1,25-(OH)2D3 on the immune system are mainly immunosuppressive. The cross-presentation pathway allows for exogenously derived antigens to be presented by pAPCs on MHC-I molecules to CD8+ T cells. CD8+ T cell activation results in the expansion of epitope-specific T cell populations that confer host protection. These epitopes can be organized into an immunodominance hierarchy. Previous work demonstrated that introducing LCMV-NP via the cross-priming pathway significantly alters the immunodominance hierarchy of a subsequent LCMV infection. Building upon these observations, our study assessed the effects of LCMV-NP cross priming in the presence of a single dose of 1,25-(OH)2D3. Treatment with 1,25-(OH)2D3 was found to have biological effects in our model system. In vitro pAPCs were demonstrated to up-regulate IL-10 and CYP24A1 mRNA, in addition to the transactivation of cellular VDR, as demonstrated by a relocalization to the nuclear region. Mice treated with 1,25-(OH)2D3 were found to produce up-regulated IL-10 and CYP24A1 transcripts. Expression of VDR was increased at both the transcript and protein level. Our results demonstrate that a single dose of 1,25-(OH)2D3 does not affect the cross-priming pathway in this system. Treatment with 1,25-(OH)2D3 did not influence the ability of differentiated pAPCs to phagocytose or cross-present exogenous antigen to epitope-specific CD8+ T cells. Furthermore, 1,25-(OH)2D3 did not alter cross-priming or the establishment of the LCMV immunodominance hierarchy in vivo. By confirming that 1,25-(OH)2D3 does not suppress cross-priming in our model, our study helps to expand the understanding of the immunomodulatory role of exogenous 1,25-(OH)2D3 on the outcome of virus infection. Collectively, our data supports the observation that the role of 1,25-(OH)2D3 in the immune system is not always associated with suppressive effects.