3 resultados para HISTONE CHAPERONE
em QSpace: Queen's University - Canada
Enhancement of a novel gene therapy approach for Sandhoff disease through complimentary drug therapy
Resumo:
GM2 gangliosidoses is a family of severe, neurodegenerative disorders resulting from a deficiency in the β-hexosaminidase A (Hex A) enzyme. This disorder is typically caused by a mutation to either the HEXA gene, causing Tay Sachs disease, or a mutation to the HEXB gene, causing Sandhoff disease. The HEXA and HEXB genes are required to produce the α and β subunits of the Hex A enzyme respectively. Using a Sandhoff disease (SD) mouse model (Hexb-/-) we tested the potential of a low dose of systemically delivered single stranded adeno-associated virus 9 (ssAAV9) expressing human HEXB and human HEXA cDNA under the control of a single promoter through the use of a bicistronic vector design with a P2A linker to correct the neurological phenotype. Neonatal mice were injected with either this ssAAV9-HexB-P2A-HexA vector (HexB-HexA) or a vehicle solution via the superficial temporal vein. HexB-HexA treatment alone conferred an increase in survival of 56% compared to vehicle-injected controls and biochemical analysis of the brain tissue and serum revealed an increase in HexA activity and a decrease in brain GM2 ganglioside buildup. Additionally, treatments with the non-steroidal anti-inflammatory drug indomethacin (Indo), the histone deactylase inhibitor ITF2357 (ITF) and the pharmacological chaperone pyrimethamine (Pyr) were tested. The anti-inflammatory treatments of Indo and ITF conferred an increase in survival of 12% and 8% respectively while causing no alteration in the HexA activity or GM2 ganglioside buildup. Pyr had no observable effect on disease progression. Lastly HexB-HexA treatment was tested in conjunction with Indo, ITF and Pyr individually. Additive increases in survival and behavioural testing results were observed with Indo and ITF treatments while no additional benefit to HexA activity or GM2 ganglioside levels in the brain tissue was observed. This indicates the two treatments slowed the progression of the disease through a different mechanism than the reduction of the GM2 ganglioside substrate. Pyr treatment was shown to have no effect when combined with HexB-HexA treatment. This study demonstrates the potential amelioration of SD with a novel AAV9 gene therapy approach as well as helped to identify the additive potential of anti-inflammatory treatments in gene therapy of GM2 gangliosidoses.
Resumo:
Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like pro-enzyme that, once activated, attenuates fibrinolysis. TAFIa also possesses anti-inflammatory properties. Although liver is the main source of plasma TAFI, platelet-derived TAFI has also been reported. An alternatively spliced TAFI variant resulted from the skipping of exon 6 and a 52-base deletion in exon 10 of CPB2 mRNA (∆6+10) was described to be brain specific. This TAFI variant is reputed to possess a secretase-like activity that cleaves β-amyloid precursor protein to form β-amyloid, a process involved in the onset of Alzheimer's disease. In this thesis, we report the identification of CPB2 mRNA and TAFI protein in various vascular and inflammatory cells. Specifically, we describe the expression of CPB2 mRNA in the megakaryocytic cell lines MEG-01 and Dami, the monocytic cell line THP-1, and peripheral blood mononuclear cells. TAFI protein was detected in differentiated Dami and THP-1 cells. We next describe the effect of external stimuli such as phorbol myristate acetate (PMA) on CPB2 expression in Dami and THP-1 cells. We found that PMA treatment increases both CPB2 mRNA abundance and promoter activity in Dami cells, and decreases both CPB2 mRNA abundance and promoter activity in THP-1 cells. Deletion analysis of the CPB2 promoter indicated cell-type specific regulation of CPB2 gene expression. Finally, we evaluated the expression of alternatively spliced CPB2 mRNA variants in hepatic and non hepatic cells. We found that exon 6 skipping variants are expressed in all cell types of interest. The variant previously reported to be brain specific was also found to be expressed in platelets. We found that the alternatively spliced TAFI variants accumulated inside the cells in a non-secretable, hypoglycosylated form and showed no carboxypeptidase activity. Taken together, this thesis provides further evidence supporting the hypothesis that platelet-derived TAFI is originated from CPB2 gene expression in megakaryocytes. Moreover, our data imply a potential for site-specific anti-inflammatory control provided by macrophage-derived TAFI. Alternative splicing of the CPB2 mRNA may give rise to variants with an intracellular role, perhaps as a peptidase chaperone, and may modulate the synthesis of secretable TAFI.
Resumo:
E2A is a transcription factor that plays a particularly critical role in lymphopoiesis. The chromosomal translocation 1;19, disrupts the E2A gene and results in the expression of the fusion oncoprotein E2A-PBX1, which is implicated in acute lymphoblastic leukemia. Both E2A and E2A-PBX1 contain two activation domains, AD1 and AD2, which comprise conserved ΦxxΦΦ motifs where Φ denotes a hydrophobic amino acid. These domains function to recruit transcriptional co-activators and repressors, including the histone acetyl transferase CREB binding protein (CBP) and its paralog p300. The PCET motif within E2A AD1 interacts with the KIX domain of CBP/p300, the disruption of which abrogates the transcriptional activation by E2A and the transformative properties of E2A-PBX1. The generation of a peptide-based inhibitor targeting the PCET:KIX interaction would serve useful in further assessing the role of E2A and E2A-PBX1 in lymphopoiesis and leukemogenesis. An interaction between E2A AD2 and the KIX domain has also been recently identified, and the TAZ domains of CBP/p300 have been shown to interact with several transcription factors that contain ΦxxΦΦ motifs. Thus the design of an inhibitor of the E2A:CBP/p300 interaction requires the full complement of interactions between E2A and the various domains of CBP/p300 to be elucidated. Here, we have used nuclear magnetic resonance (NMR) spectroscopy to determine that AD2 interacts with KIX at the same site as PCET, which indicates that the E2A:KIX interaction can be disrupted by targeting a single binding site. Using an iterative synthetic peptide microarray approach, a peptide with the sequence DKELQDLLDFSLQY was derived from PCET to interact with KIX with higher affinity than the wild type sequence. This peptide now serves as a lead molecule for further development as an inhibitor of the E2A:CBP/p300 interaction. Fluorescence anisotropy, peptide microarray technology, and isothermal titration calorimetry were employed to characterize interactions between both TAZ domains of CBP/p300 and the PCET motif and AD2 of E2A. Alanine substitution of residues within PCET demonstrated that the ΦxxΦΦ motif is a key mediator of these interactions, analogous to the PCET:KIX interaction. These findings now inform future work to establish possible physiological roles for the E2A:TAZ1 and E2A:TAZ2 interactions.