2 resultados para Geisthardt, Rachael
em QSpace: Queen's University - Canada
Resumo:
Attachment anxiety, or a fear of abandonment by those close to you, is an important predictor of many individual and interpersonal outcomes. Individuals high in attachment anxiety are more likely to experience physical illness due to disrupted immune functioning and deregulated stress responses. I was interested in examining potential mechanisms accounting for why individuals high in attachment anxiety are more likely to become ill. One variable that has been demonstrated to mediate the relationship between stress and health is sleep quality. As attachment anxiety is characterized by the experience of stress and worry over abandonment by romantic partners, I predicted sleep quality would mediate the relationship between attachment anxiety and health. Further, I predicted attachment anxiety would interact with romantic threat, in that individuals high in attachment anxiety who perceive threat to their relationships would have poor sleep quality (compared with individuals low in attachment anxiety and individuals high in anxiety who do not perceive threat) which would mediate the most unhealthy outcomes. I tested these hypotheses using three online diary studies. In the first two studies, participants completed a seven-night diary describing their sleep quality, health, and interaction with their partner. In Study 3, I surveyed participants once a week for eight weeks to examine longer-term health outcomes. Sleep quality did indeed mediate the relationship between attachment anxiety and various health outcomes over one week (Study 2), and showed a trend towards mediating effects over two months (Study 3). Interestingly, however, attachment anxiety did not interact with perceived romantic threat to predict health in the mediation analyses. Implications for sleep as a mediating variable are discussed, as well as the lack of attachment anxiety by romantic threat interaction.
Resumo:
Recreational fisheries in North America are valued between $47.3 billion and $56.8 billion. Fisheries managers must make strategic decisions based on sound science and knowledge of population ecology, to effectively conserve populations. Competitive fishing, in the form of tournaments, has become an important part of recreational fisheries, and is common on large waterbodies including the Great Lakes. Black Bass, Micropterus spp., are top predators and among the most sought after species in competitive catch-and-release tournaments. This study investigated catch-and-release tournaments as an assessment tool through mark-recapture for Largemouth Bass (>305mm) populations in the Tri Lakes, and Bay of Quinte, part of the eastern basin of Lake Ontario. The population in the Tri Lakes (1999-2002) was estimated to be stable between 21,928-29,780, and the population in the Bay of Quinte (2012-2015) was estimated to be between 31,825-54,029 fish. Survival in the Tri Lakes varied throughout the study period, from 31%-54%; while survival in the Bay of Quinte remained stable at 63%. Differences in survival may be due to differences in fishing pressure, as 34-46% of the Largemouth Bass population on the Tri Lakes is harvested annually and only 19% of catch was attributed to tournament angling. Many biological issues still surround catch-and-release tournaments, particularly concerning displacement from initial capture sites. In the past, the majority of studies have focused on small inland lakes and coastal areas, displacing bass relatively short distances. My study displaced Largemouth and Smallmouth Bass up to 100km, and found very low rates of return; only 1 of 18 Largemouth Bass returned 15 km and 1 of 18 Smallmouth Bass returned 135 km. Both species remained near the release sites for an average of approximately 2 weeks prior to dispersing. Tournament organizers should consider the use of satellite release locations to facilitate dispersal and prevent stockpiling at the release site. Catch-and-release tournaments proved to be a valuable tool in assessing population variables and the effects of long distance displacement through the use of mark recapture and acoustic telemetry on large lake systems.