3 resultados para G20210A prothrombin gene mutation

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Locomotor recovery from anoxia is complicated and little is known about the molecular and cellular mechanisms regulating anoxic recovery in Drosophila. For this thesis I established a protocol for large-scale analysis of locomotor activity in adult flies with exposure to a transient anoxia. Using this protocol I observed that wild-type Canton-S flies recovered faster and more consistently from anoxia than the white-eyed mutant w1118, which carries a null allele of w1118 in an isogenic genetic background. Both Canton-S and w1118 are commonly used controls in the Drosophila community. Genetic analysis including serial backcrossing, RNAi knockdown, w+ duplication to Y chromosome as well as gene mutation revealed a strong association between the white gene and the timing of locomotor recovery. I also found that the locomotor recovery phenotype is independent of white-associated eye pigmentation, that heterozygous w+ allele was haplo-insufficient to induce fast and consistent locomotor recovery from anoxia in female flies, and that mini-white is insufficient to promote fast and consistent locomotor recovery. Moreover, locomotor recovery was delayed in flies with RNAi knockdown of white in subsets of serotonin neurons in the central nervous system. I further demonstrated that mutations of phosphodiesterase genes (PDE) displayed wild-type-like fast and consistent locomotor recovery, and that locomotor recovery was light-sensitive in the night in w1118. The delayed locomotor recovery and the light sensitivity were eliminated in PDE mutants that were dual-specific or cyclic guanosine monophosphate (cGMP)-specific. Up-regulation of cGMP using multiple approaches including PDE mutation, sildenafil feeding or specific expression of an atypical soluble guanylyl cyclase (Gyc88E) was sufficient to suppress w-RNAi induced delay of locomotor recovery. Taken together, these data strongly support the hypothesis that White transports cGMP and promotes fast and consistent locomotor recovery from anoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In May 2013, Angelina Jolie revealed that because she had a family history of breast and ovarian cancer and carried a rare BRCA gene mutation, she had undergone a preventive double mastectomy. Media coverage has been extensive around the world, including in Russia, not an English-language country, where all global news is inevitably filtered by translation. After examining the reactions of Russian mass media and members of the public to Jolie’s disclosure, I consider what transformations have occurred with Jolie’s message in the process of cross-cultural transfer. I explore the mass media portrayal of Jolie’s announcement, laypersons’ immediate and prolonged reactions, and the reflections of patients involved directly in the field of hereditary breast cancer. To my knowledge, this multifaceted and bilingual project is the first conceptualization of Jolie’s story as it has been translated in a different sociocultural environment. I start with examination of offline and online publications that appeared in Russia within two months after Jolie’s announcement. In this part of my analysis, I conceptualize the representation of Jolie’s case in Russian mass media and grasp what sociocultural waves were generated by this case among general lay audiences. Another part of my study contains the results of qualitative in-depth interviews. Eight women with a family history of hereditary breast cancer were recruited to participate in the research. The findings represent Jolie’s case through the eyes of Russian women with the same gene mutation as Jolie. Consolidating my findings, I argue that Jolie’s announcement was misinterpreted and misrepresented by Russian mass media, as well as misunderstood by a considerable part of the media audience. Jolie’s perspective on hereditary breast cancer mostly remained unheard among members of the Russian public. I make suggestions about the reasons for such a phenomenon, and demonstrate how Jolie’s case is implicated in politics, economics, and the culture of contemporary Russia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GM2 gangliosidoses is a family of severe, neurodegenerative disorders resulting from a deficiency in the β-hexosaminidase A (Hex A) enzyme. This disorder is typically caused by a mutation to either the HEXA gene, causing Tay Sachs disease, or a mutation to the HEXB gene, causing Sandhoff disease. The HEXA and HEXB genes are required to produce the α and β subunits of the Hex A enzyme respectively. Using a Sandhoff disease (SD) mouse model (Hexb-/-) we tested the potential of a low dose of systemically delivered single stranded adeno-associated virus 9 (ssAAV9) expressing human HEXB and human HEXA cDNA under the control of a single promoter through the use of a bicistronic vector design with a P2A linker to correct the neurological phenotype. Neonatal mice were injected with either this ssAAV9-HexB-P2A-HexA vector (HexB-HexA) or a vehicle solution via the superficial temporal vein. HexB-HexA treatment alone conferred an increase in survival of 56% compared to vehicle-injected controls and biochemical analysis of the brain tissue and serum revealed an increase in HexA activity and a decrease in brain GM2 ganglioside buildup. Additionally, treatments with the non-steroidal anti-inflammatory drug indomethacin (Indo), the histone deactylase inhibitor ITF2357 (ITF) and the pharmacological chaperone pyrimethamine (Pyr) were tested. The anti-inflammatory treatments of Indo and ITF conferred an increase in survival of 12% and 8% respectively while causing no alteration in the HexA activity or GM2 ganglioside buildup. Pyr had no observable effect on disease progression. Lastly HexB-HexA treatment was tested in conjunction with Indo, ITF and Pyr individually. Additive increases in survival and behavioural testing results were observed with Indo and ITF treatments while no additional benefit to HexA activity or GM2 ganglioside levels in the brain tissue was observed. This indicates the two treatments slowed the progression of the disease through a different mechanism than the reduction of the GM2 ganglioside substrate. Pyr treatment was shown to have no effect when combined with HexB-HexA treatment. This study demonstrates the potential amelioration of SD with a novel AAV9 gene therapy approach as well as helped to identify the additive potential of anti-inflammatory treatments in gene therapy of GM2 gangliosidoses.