3 resultados para Functional capacity evaluation

em QSpace: Queen's University - Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Canada, increases in rural development has led to a growing need to effectively manage the resulting municipal and city sewage without the addition of significant cost- and energy- expending infrastructure. Storring Septic Service Limited is a family-owned, licensed wastewater treatment facility located in eastern Ontario. It makes use of a passive waste stabilization pond system to treat and dispose of waste and wastewater in an environmentally responsible manner. Storring Septic, like many other similar small-scale wastewater treatment facilities across Canada, has the potential to act as a sustainable eco-engineered facility that municipalities and service providers could utilize to manage and dispose of their wastewater. However, it is of concern that the substantial inclusion of third party material could be detrimental to the stability and robustness of the pond system. In order to augment the capacity of the current facility, and ensure it remains a self-sustaining system with the capacity to safely accept septage from other sewage haulers, it was hypothesized that pond effluent treatment could be further enhanced through the incorporation of one of three different technology solutions, which would allow the reduction of wastewater quality parameters below existing regulatory effluent discharge limits put in place by Ontario’s Ministry of the Environment and Climate Change (MOECC). Two of these solutions make use of biofilm technologies in order to enhance the removal of wastewater parameters of interest, and the third utilizes the natural water filtration capabilities of zebra mussels. Pilot-scale testing investigated the effects of each of these technologies on treatment performance under both cold and warm weather operation. This research aimed to understand the important mechanisms behind biological filtration methods in order to choose and optimize the best treatment strategy for full-scale testing and implementation. In doing so, a recommendation matrix was elaborated provided with the potential to be used as a universal operational strategy for wastewater treatment facilities located in environments of similar climate and ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinesins are molecular motors that transport intracellular cargos along microtubules (MTs) and influence the organization and dynamics of the MT cytoskeleton. Their force-generating functions arise from conformational changes in their motor domain as ATP is bound and hydrolyzed, and products are released. In the budding yeast Saccharomyces cerevisiae, the Kar3 kinesin forms heterodimers with one of two non-catalytic kinesin-like proteins, Cik1 and Vik1, which lack the ability to bind ATP, and yet they retain the capacity to bind MTs. Cik1 and Vik1 also influence and respond to the MT-binding and nucleotide states of Kar3, and differentially regulate the functions of Kar3 during yeast mating and mitosis. The mechanism by which Kar3/Cik1 and Kar3/Vik1 dimers operate remains unknown, but has important implications for understanding mechanical coordination between subunits of motor complexes that traverse cytoskeletal tracks. In this study, we show that the opportunistic human fungal pathogen Candida albicans (Ca) harbors a single version of this unique form of heterodimeric kinesin and we present the first in vitro characterization of this motor. Like its budding yeast counterpart, the Vik1-like subunit binds directly to MTs and strengthens the MT-binding affinity of the heterodimer. However, in contrast to ScKar3/Cik1 and ScKar3/Vik1, CaKar3/Vik1 exhibits weaker overall MT-binding affinity and lower ATPase activity. Preliminary investigations using a multiple motor motility assay indicate CaKar3/Vik1 may not be motile. Using a maltose binding protein tagging system, we determined the X-ray crystal structure of the CaKar3 motor domain and observed notable differences in its nucleotide-binding pocket relative to ScKar3 that appear to represent a previously unobserved state of the active site. Together, these studies broaden our knowledge of novel kinesin motor assemblies and shed new light on structurally dynamic regions of Kar3/Vik1-like motor complexes that help mediate mechanical coordination of its subunits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The main objective of this pilot study was to investigate which standardized functional and physiological test best predicted perceived disability in a single group of 21 individuals diagnosed with osteoarthritis of the hip. Design: Men and women between 60 and 70 years old with osteoarthritis of the hip were selected. If participants passed study criteria, the Western Ontario McMaster University questionnaire (WOMAC), 6 Minute Walk Test (6MWT) and Timed up and Go (TUG), strength testing and aerobic testing were obtained in one single assessment. Results: Regression analysis revealed that wait time, hip abduction strength of the affected side, Aerobic Capacity (VO2 Peak), hip Extension Peak Torque, hip Flexion Peak Torque, TUG and 6MWT were significantly correlated with the WOMAC. Yet, the 6MWT had the highest significant correlation (r = -0.86, p ≤ 0.0001); R2 = 0.75 or 75% with the WOMAC total scores, (r = -0.82, p ≤ 0.0001); R2 = 0.67 or 67% with the WOMAC function and (r = -0.60, p = .002); R2 = 0.36 or 36% with the WOMAC stiffness. While the VO2 Peak revealed the highest significant correlation (r = 0.76, p ≤ .0001); R2 = 0.57 or 57% with the WOMAC pain. Conclusions: The 6MWT and the VO2 Peak seem to be essential functional and physiological assessment tools to determine perceived disability in individuals with hip OA. The perceived disability may provide new or comprehensive knowledge of the disability problems experienced by individuals with osteoarthritis of the hip, and the association of patient perception with objective measures of functional and physiological capacity might strengthen the clinical value of this knowledge.