2 resultados para FLOW MATHEMATICAL-MODEL
em QSpace: Queen's University - Canada
Resumo:
Bidirectional DC-DC converters are widely used in different applications such as energy storage systems, Electric Vehicles (EVs), UPS, etc. In particular, future EVs require bidirectional power flow in order to integrate energy storage units into smart grids. These bidirectional power converters provide Grid to Vehicle (V2G)/ Vehicle to Grid (G2V) power flow capability for future EVs. Generally, there are two control loops used for bidirectional DC-DC converters: The inner current loop and The outer loop. The control of DAB converters used in EVs are proved to be challenging due to the wide range of operating conditions and non-linear behavior of the converter. In this thesis, the precise mathematical model of the converter is derived and non-linear control schemes are proposed for the control system of bidirectional DC-DC converters based on the derived model. The proposed inner current control technique is developed based on a novel Geometric-Sequence Control (GSC) approach. The proposed control technique offers significantly improved performance as compared to one for conventional control approaches. The proposed technique utilizes a simple control algorithm which saves on the computational resources. Therefore, it has higher reliability, which is essential in this application. Although, the proposed control technique is based on the mathematical model of the converter, its robustness against parameter uncertainties is proven. Three different control modes for charging the traction batteries in EVs are investigated in this thesis: the voltage mode control, the current mode control, and the power mode control. The outer loop control is determined by each of the three control modes. The structure of the outer control loop provides the current reference for the inner current loop. Comprehensive computer simulations have been conducted in order to evaluate the performance of the proposed control methods. In addition, the proposed control have been verified on a 3.3 kW experimental prototype. Simulation and experimental results show the superior performance of the proposed control techniques over the conventional ones.
Resumo:
Bitumen extraction from surface-mined oil sands results in the production of large volumes of Fluid Fine Tailings (FFT). Through Directive 085, the Province of Alberta has signaled that oil sands operators must improve and accelerate the methods by which they deal with FFT production, storage and treatment. This thesis aims to develop an enhanced method to forecast FFT production based on specific ore characteristics. A mass relationship and mathematical model to modify the Forecasting Tailings Model (FTM) by using fines and clay boundaries, as the two main indicators in FFT accumulation, has been developed. The modified FTM has been applied on representative block model data from an operating oil sands mining venture. An attempt has been made to identify order-of-magnitude associated tailings treatment costs, and to improve financial performance by not processing materials that have ultimate ore processing and tailings storage and treatment costs in excess of the value of bitumen they produce. The results on the real case study show that there is a 53% reduction in total tailings accumulations over the mine life by selectively processing only lower tailings generating materials through eliminating 15% of total mined ore materials with higher potential of fluid fines inventory. This significant result will assess the impact of Directive 082 on mining project economic and environmental performance towards the sustainable development of mining projects.