1 resultado para Extremal polynomial ultraspherical polynomials
em QSpace: Queen's University - Canada
Filtro por publicador
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (65)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (65)
- CentAUR: Central Archive University of Reading - UK (67)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (11)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (89)
- CUNY Academic Works (20)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (16)
- Duke University (1)
- Greenwich Academic Literature Archive - UK (1)
- Instituto Politécnico do Porto, Portugal (15)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (4)
- Martin Luther Universitat Halle Wittenberg, Germany (5)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (2)
- QSpace: Queen's University - Canada (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositório da Produção Científica e Intelectual da Unicamp (10)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (246)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- Scielo Saúde Pública - SP (42)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (7)
- Universidade do Minho (8)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (15)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (25)
- Université de Lausanne, Switzerland (26)
- Université de Montréal, Canada (33)
- University of Connecticut - USA (3)
- University of Michigan (9)
- University of Queensland eSpace - Australia (33)
- University of Southampton, United Kingdom (11)
Resumo:
We prove that a random Hilbert scheme that parametrizes the closed subschemes with a fixed Hilbert polynomial in some projective space is irreducible and nonsingular with probability greater than $0.5$. To consider the set of nonempty Hilbert schemes as a probability space, we transform this set into a disjoint union of infinite binary trees, reinterpreting Macaulay's classification of admissible Hilbert polynomials. Choosing discrete probability distributions with infinite support on the trees establishes our notion of random Hilbert schemes. To bound the probability that random Hilbert schemes are irreducible and nonsingular, we show that at least half of the vertices in the binary trees correspond to Hilbert schemes with unique Borel-fixed points.