2 resultados para Exploitation of residues

em QSpace: Queen's University - Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an extensive photometric catalog for 548 CALIFA galaxies observed as of the summer of 2015. CALIFA is currently lacking photometry matching the scale and diversity of its spectroscopy; this work is intended to meet all photometric needs for CALIFA galaxies while also identifying best photometric practices for upcoming integral field spectroscopy surveys such as SAMI and MaNGA. This catalog comprises gri surface brightness profiles derived from Sloan Digital Sky Survey (SDSS) imaging, a variety of non-parametric quantities extracted from these pro files, and parametric models fitted to the i-band pro files (1D) and original galaxy images (2D). To compliment our photometric analysis, we contrast the relative performance of our 1D and 2D modelling approaches. The ability of each measurement to characterize the global properties of galaxies is quantitatively assessed, in the context of constructing the tightest scaling relations. Where possible, we compare our photometry with existing photometrically or spectroscopically obtained measurements from the literature. Close agreement is found with Walcher et al. (2014), the current source of basic photometry and classifications of CALIFA galaxies, while comparisons with spectroscopically derived quantities reveals the effect of CALIFA's limited field of view compared to broadband imaging surveys such as the SDSS. The colour-magnitude diagram, star formation main sequence, and Tully-Fisher relation of CALIFA galaxies are studied, to give a small example of the investigations possible with this rich catalog. We conclude with a discussion of points of concern for ongoing integral field spectroscopy surveys and directions for future expansion and exploitation of this work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The commodification of natural resources and the pursuit of continuous growth has resulted in environmental degradation, depletion, and disparity in access to these life-sustaining resources, including water. Utility-based objectification and exploitation of water in some societies has brought us to the brink of crisis through an apathetic disregard for present and future generations. The ongoing depletion and degradation of the world’s water sources, coupled with a reliance on Western knowledge and the continued omission of Indigenous knowledge to manage our relationship with water has unduly burdened many, but particularly so for Indigenous communities. The goal of my thesis research is to call attention to and advance the value and validity of using both Indigenous and Western knowledge systems (also known as Two-Eyed Seeing) in water research and management to better care for water. To achieve this goal, I used a combined systematic and realist review method to identify and synthesize the peer-reviewed, integrative water literature, followed by semi-structured interviews with first authors of the exemplars from the included literature to identify the challenges and insights that researchers have experienced in conducting integrative water research. Findings suggest that these authors recognize that many previous attempts to integrate Indigenous knowledges have been tokenistic rather than meaningful, and that new methods for knowledge implementation are needed. Community-based participatory research methods, and the associated tenets of balancing power, fostering trust, and community ownership over the research process, emerged as a pathway towards the meaningful implementation of Indigenous and Western knowledge systems. Data also indicate that engagement and collaborative governance structures developed from a position of mutual respect are integral to the realization of a given project. The recommendations generated from these findings offer support for future Indigenous-led research and partnerships through the identification and examination of approaches that facilitate the meaningful implementation of Indigenous and Western knowledge systems in water research and management. Asking Western science questions and seeking Indigenous science solutions does not appear to be working; instead, the co-design of research projects and asking questions directed at the problem rather than the solution better lends itself to the strengths of Indigenous science.