2 resultados para Exogenous FSH dosage
em QSpace: Queen's University - Canada
Resumo:
Antifreeze proteins (AFPs) protect marine teleosts from freezing in icy seawater by binding to nascent ice crystals and preventing their growth. It has been suggested that the gene dosage for AFPs in fish reflects the degree of exposure to harsh winter climates. The starry flounder, _Platichthys stellatus_, has been chosen to examine this relationship because it inhabits a range of the Pacific coast from California to the Arctic. This flatfish is presumed to produce type I AFP, which is an alanine-rich, amphipathic alpha-helix. Genomic DNA from four starry flounder was Southern blotted and probed with a cDNA of a winter flounder liver AFP. The hybridization signal was consistent with a gene family of approximately 40 copies. Blots of DNA from other starry flounder indicate that California fish have far fewer gene copies whereas Alaska fish have far more. This analysis is complicated by the fact that there are three different type I AFP isoforms. The first is expressed in the liver and secreted into circulation, the second is a larger hyperactive dimer also thought to be expressed in the liver, and the third is expressed in peripheral tissues. To evaluate the contribution of these latter two isoforms to the overall gene signal on Southern blots, hybridization probes for the three isoforms were isolated from starry flounder DNA by genomic cloning. Two clones revealed linkage of genes for different isoforms, and this was confirmed by genomic Southern blotting, where hybridization patterns indicated that the majority of genes were present in tandem repeats. The sequence and diversity of all three isoforms was sampled in the starry flounder genome by PCR. All coding sequences derived for the skin and liver isoforms were consistent with the proposed structure-function relationships for this AFP, where the flat hydrophobic side of the helix is conserved for ice binding. There was greater sequence diversity in the skin and hyperactive isoforms than in the liver isoform, suggesting that the latter evolved recently from one of the other two. The genomic PCR primers are currently being used to sample isoform diversity in related right-eyed flounders to test this hypothesis.
Resumo:
Biologically active 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) binds the vitamin D receptor (VDR) to exert its effect on target cells. VDR expression is found in a number of immune cells including professional antigen-presenting cells such as dendritic cells. It has been found that the actions of 1,25-(OH)2D3 on the immune system are mainly immunosuppressive. The cross-presentation pathway allows for exogenously derived antigens to be presented by pAPCs on MHC-I molecules to CD8+ T cells. CD8+ T cell activation results in the expansion of epitope-specific T cell populations that confer host protection. These epitopes can be organized into an immunodominance hierarchy. Previous work demonstrated that introducing LCMV-NP via the cross-priming pathway significantly alters the immunodominance hierarchy of a subsequent LCMV infection. Building upon these observations, our study assessed the effects of LCMV-NP cross priming in the presence of a single dose of 1,25-(OH)2D3. Treatment with 1,25-(OH)2D3 was found to have biological effects in our model system. In vitro pAPCs were demonstrated to up-regulate IL-10 and CYP24A1 mRNA, in addition to the transactivation of cellular VDR, as demonstrated by a relocalization to the nuclear region. Mice treated with 1,25-(OH)2D3 were found to produce up-regulated IL-10 and CYP24A1 transcripts. Expression of VDR was increased at both the transcript and protein level. Our results demonstrate that a single dose of 1,25-(OH)2D3 does not affect the cross-priming pathway in this system. Treatment with 1,25-(OH)2D3 did not influence the ability of differentiated pAPCs to phagocytose or cross-present exogenous antigen to epitope-specific CD8+ T cells. Furthermore, 1,25-(OH)2D3 did not alter cross-priming or the establishment of the LCMV immunodominance hierarchy in vivo. By confirming that 1,25-(OH)2D3 does not suppress cross-priming in our model, our study helps to expand the understanding of the immunomodulatory role of exogenous 1,25-(OH)2D3 on the outcome of virus infection. Collectively, our data supports the observation that the role of 1,25-(OH)2D3 in the immune system is not always associated with suppressive effects.