1 resultado para Error estimator
em QSpace: Queen's University - Canada
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (62)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (82)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (37)
- Brock University, Canada (7)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- Cámara de Comercio de Bogotá, Colombia (2)
- CentAUR: Central Archive University of Reading - UK (113)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (12)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (50)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (14)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (13)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (3)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (18)
- Ministerio de Cultura, Spain (28)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (12)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (50)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (30)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (28)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (2)
- Scielo España (3)
- Scielo Saúde Pública - SP (7)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (13)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (27)
- Universidade Complutense de Madrid (7)
- Universidade do Minho (1)
- Universitat de Girona, Spain (13)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (31)
- Université de Montréal (1)
- Université de Montréal, Canada (16)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (53)
- University of Queensland eSpace - Australia (52)
- University of Southampton, United Kingdom (2)
- University of Washington (2)
Resumo:
Quantile regression (QR) was first introduced by Roger Koenker and Gilbert Bassett in 1978. It is robust to outliers which affect least squares estimator on a large scale in linear regression. Instead of modeling mean of the response, QR provides an alternative way to model the relationship between quantiles of the response and covariates. Therefore, QR can be widely used to solve problems in econometrics, environmental sciences and health sciences. Sample size is an important factor in the planning stage of experimental design and observational studies. In ordinary linear regression, sample size may be determined based on either precision analysis or power analysis with closed form formulas. There are also methods that calculate sample size based on precision analysis for QR like C.Jennen-Steinmetz and S.Wellek (2005). A method to estimate sample size for QR based on power analysis was proposed by Shao and Wang (2009). In this paper, a new method is proposed to calculate sample size based on power analysis under hypothesis test of covariate effects. Even though error distribution assumption is not necessary for QR analysis itself, researchers have to make assumptions of error distribution and covariate structure in the planning stage of a study to obtain a reasonable estimate of sample size. In this project, both parametric and nonparametric methods are provided to estimate error distribution. Since the method proposed can be implemented in R, user is able to choose either parametric distribution or nonparametric kernel density estimation for error distribution. User also needs to specify the covariate structure and effect size to carry out sample size and power calculation. The performance of the method proposed is further evaluated using numerical simulation. The results suggest that the sample sizes obtained from our method provide empirical powers that are closed to the nominal power level, for example, 80%.