1 resultado para Dynamical variables
em QSpace: Queen's University - Canada
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Adam Mickiewicz University Repository (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (3)
- Aquatic Commons (15)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (13)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (29)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Boston University Digital Common (4)
- Brock University, Canada (3)
- CaltechTHESIS (11)
- Cámara de Comercio de Bogotá, Colombia (5)
- Cambridge University Engineering Department Publications Database (66)
- CentAUR: Central Archive University of Reading - UK (98)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (48)
- Cochin University of Science & Technology (CUSAT), India (15)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DigitalCommons - The University of Maine Research (1)
- Diposit Digital de la UB - Universidade de Barcelona (5)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (11)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (5)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Helda - Digital Repository of University of Helsinki (11)
- Indian Institute of Science - Bangalore - Índia (75)
- Instituto Politécnico do Porto, Portugal (6)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (228)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (11)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (96)
- Queensland University of Technology - ePrints Archive (62)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositorio Institucional de la Universidad Nacional Agraria (4)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (20)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (3)
- Universidad Autónoma de Nuevo León, Mexico (18)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (21)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universitat de Girona, Spain (11)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (38)
- University of Southampton, United Kingdom (3)
- WestminsterResearch - UK (1)
Resumo:
The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.