2 resultados para Droplet-vitrification

em QSpace: Queen's University - Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whispering gallery mode particle sensing experiments are commonly performed with solid resonators, whereby the sensing volume is limited to the weak evanescent tail of the mode near the resonator surface. In this work we discuss in detail the sensitivity enhancements achievable in liquid droplet resonators wherein the stronger internal fields and convenient means of particle delivery can be exploited. Asymptotic formulae are derived for the relative resonance shift, line broadening and mode splitting of TE and TM modes in liquid droplet resonators. As a corollary the relative fraction of internal and external mode energy follows, which is shown to govern achievable sensitivity enhancements of solute concentration measurements in droplet sensors. Experimental measurements of nanoparticle concentration based on whispering gallery mode resonance broadening are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid droplets suspended by the tip of a thin wire, a glass capillary, or a needle form high-Q optical resonators, thanks to surface tension. Under gravity equilibrium conditions, the maximum drop diameter is approximately 1.5 mm for paraffin oil (volume ∼ 0.5 μL) using, for instance, a silica fiber with 250 μm thickness. Whispering gallery modes are excited by a free-space near-infrared laser that is frequency locked to the cavity resonance. The droplet cavity serves as a miniature laboratory for sensing of chemical species and particles.