3 resultados para Dirichlet polynomials

em QSpace: Queen's University - Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the Dirichlet to Neumann operator for the Riemannian wave equation on a compact Riemannian manifold. If the Riemannian manifold is modelled as an elastic medium, this operator represents the data available to an observer on the boundary of the manifold when the manifold is set into motion through boundary vibrations. We study the Dirichlet to Neumann operator when vibrations are imposed and data recorded on disjoint sets, a useful setting for applications. We prove that this operator determines the Dirichlet to Neumann operator where sources and observations are on the same set, provided a spectral condition on the Laplace-Beltrami operator for the manifold is satisfied. We prove this by providing an implementable procedure for determining a portion of the Riemannian manifold near the area where sources are applied. Drawing on established results, an immediate corollary is that a compact Riemannian manifold can be reconstructed from the Dirichlet to Neumann operator where sources and observations are on disjoint sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the Dirichlet to Neumann operator for the Riemannian wave equation on a compact Riemannian manifold. If the Riemannian manifold is modelled as an elastic medium, this operator represents the data available to an observer on the boundary of the manifold when the manifold is set into motion through boundary vibrations. We study the Dirichlet to Neumann operator when vibrations are imposed and data recorded on disjoint sets, a useful setting for applications. We prove that this operator determines the Dirichlet to Neumann operator where sources and observations are on the same set, provided a spectral condition on the Laplace-Beltrami operator for the manifold is satisfied. We prove this by providing an implementable procedure for determining a portion of the Riemannian manifold near the area where sources are applied. Drawing on established results, an immediate corollary is that a compact Riemannian manifold can be reconstructed from the Dirichlet to Neumann operator where sources and observations are on disjoint sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dirichlet distribution is a multivariate generalization of the Beta distribution. It is an important multivariate continuous distribution in probability and statistics. In this report, we review the Dirichlet distribution and study its properties, including statistical and information-theoretic quantities involving this distribution. Also, relationships between the Dirichlet distribution and other distributions are discussed. There are some different ways to think about generating random variables with a Dirichlet distribution. The stick-breaking approach and the Pólya urn method are discussed. In Bayesian statistics, the Dirichlet distribution and the generalized Dirichlet distribution can both be a conjugate prior for the Multinomial distribution. The Dirichlet distribution has many applications in different fields. We focus on the unsupervised learning of a finite mixture model based on the Dirichlet distribution. The Initialization Algorithm and Dirichlet Mixture Estimation Algorithm are both reviewed for estimating the parameters of a Dirichlet mixture. Three experimental results are shown for the estimation of artificial histograms, summarization of image databases and human skin detection.