2 resultados para Direct load control

em QSpace: Queen's University - Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interacting with a computer system in the operating room (OR) can be a frustrating experience for a surgeon, who currently has to verbally delegate to an assistant every computer interaction task. This indirect mode of interaction is time consuming, error prone and can lead to poor usability of OR computer systems. This thesis describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the OR. The device was tested extensively in comparison to a mouse and delegated dictation with seven surgeons, eleven residents, and five graduate students. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer and makes use of an existing tool in the OR. We performed a user study to determine its effectiveness in allowing a user to perform all the tasks they would be expected to perform on an OR computer system during a computer-assisted surgery. Dictation was found to be superior to the joystick in qualitative measures, but the joystick was preferred over dictation in user satisfaction responses. The mouse outperformed both joystick and dictation, but it is not a readily accepted modality in the OR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the design, tuning, and extensive field testing of an admittance-based Autonomous Loading Controller (ALC) for robotic excavation. Several iterations of the ALC were tuned and tested in fragmented rock piles—similar to those found in operating mines—by using both a robotic 1-tonne capacity Kubota R520S diesel-hydraulic surface loader and a 14-tonne capacity Atlas Copco ST14 underground load-haul-dump (LHD) machine. On the R520S loader, the ALC increased payload by 18 % with greater consistency, although with more energy expended and longer dig times when compared with digging at maximum actuator velocity. On the ST14 LHD, the ALC took 61 % less time to load 39 % more payload when compared to a single manual operator. The manual operator made 28 dig attempts by using three different digging strategies, and had one failed dig. The tuned ALC made 26 dig attempts at 10 and 11 MN target force levels. All 10 11 MN digs succeeded while 6 of the 16 10 MN digs failed. The results presented in this paper suggest that the admittance-based ALC is more productive and consistent than manual operators, but that care should be taken when detecting entry into the muck pile