2 resultados para Diesel engines.

em QSpace: Queen's University - Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Underground hardrock mining can be very energy intensive and in large part this can be attributed to the power consumption of underground ventilation systems. In general, the power consumed by a mine’s ventilation system and its overall scale are closely related to the amount of diesel power in operation. This is because diesel exhaust is a major source of underground air pollution, including diesel particulate matter (DPM), NO2 and heat, and because regulations tie air volumes to diesel engines. Furthermore, assuming the size of airways remains constant, the power consumption of the main system increases exponentially with the volume of air supplied to the mine. Therefore large diesel fleets lead to increased energy consumption and can also necessitate large capital expenditures on ventilation infrastructure in order to manage power requirements. Meeting ventilation requirements for equipment in a heading can result in a similar scenario with the biggest pieces leading to higher energy consumption and potentially necessitating larger ventilation tubing and taller drifts. Depending on the climate where the mine is located, large volumes of air can have a third impact on ventilation costs if heating or cooling the air is necessary. Annual heating and cooling costs, as well as the cost of the associated infrastructure, are directly related to the volume of air sent underground. This thesis considers electric mining equipment as a means for reducing the intensity and cost of energy consumption at underground, hardrock mines. Potentially, electric equipment could greatly reduce the volume of air needed to ventilate an entire mine as well as individual headings because they do not emit many of the contaminants found in diesel exhaust and because regulations do not connect air volumes to electric motors. Because of the exponential relationship between power consumption and air volumes, this could greatly reduce the amount of power required for mine ventilation as well as the capital cost of ventilation infrastructure. As heating and cooling costs are also directly linked to air volumes, the cost and energy intensity of heating and cooling the air would also be significantly reduced. A further incentive is that powering equipment from the grid is substantially cheaper than fuelling them with diesel and can also produce far fewer GHGs. Therefore, by eliminating diesel from the underground workers will enjoy safer working conditions and operators and society at large will gain from a smaller impact on the environment. Despite their significant potential, in order to produce a credible economic assessment of electric mining equipment their impact on underground systems must be understood and considered in their evaluation. Accordingly, a good deal of this thesis reviews technical considerations related to the use of electric mining equipment, especially ones that impact the economics of their implementation. The goal of this thesis will then be to present the economic potential of implementing the equipment, as well as to outline the key inputs which are necessary to support an evaluation and to provide a model and an approach which can be used by others if the relevant information is available and acceptable assumptions can be made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last fifty years, Nunavut has developed a deep dependence on diesel for virtually all of its energy needs, including electricity. This dependence has created a number of economic, environmental and health related challenges in the territory, with an estimated 20% of the territory’s annual budget being spent on energy, thereby limiting the Government of Nunavut’s ability to address other essential infrastructure and societal needs, such as education, nutrition and health care and housing. One solution to address this diesel dependency is the use of renewable energy technologies (RETs), such as wind, solar and hydropower. As such, this thesis explores energy alternatives in Nunavut, and through RETScreen renewable energy simulations, found that solar power and wind power are technically viable options for Nunavut communities and a potentially successful means to offset diesel-generated electricity in Nunavut. However, through this analysis it was also discovered that accurate data or renewable resources are often unavailable for most Nunavut communities. Moreover, through qualitative open-ended interviews, the perspectives of Nunavut residents with regards to developing RETs in Nunavut were explored, and it was found that respondents generally supported the use of renewable energy in their communities, while acknowledging that there still remains a knowledge gap among residents regarding renewable energy, stemming from a lack of communication between the communities, government and the utility company. In addition, the perceived challenges, opportunities and gaps that exist with regards to renewable energy policy and program development were discussed with government policy-makers through further interviews, and it was discovered that often government departments work largely independently of each other rather than collaboratively, creating gaps and oversights in renewable energy policy in Nunavut. Combined, the results of this thesis were used to develop a number of recommended policy actions that could be undertaken by the territorial and federal government to support a shift towards renewable energy in order to develop a sustainable and self-sufficient energy plan in Nunavut. They include: gathering accurate renewable resource data in Nunavut; increasing community consultations on the subject of renewable energy; building strong partnerships with universities, colleges and industry; developing a knowledge sharing network; and finally increasing accessibility to renewable energy programs and policies in Nunavut.