3 resultados para Depressive Disorder

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There is growing evidence that individual EEG differences may aid in classifying patients with major depressive disorder (MDD) and also help predict clinical response to antidepressant treatment. This study aims to compare the effectiveness of EEG frequency band power, alpha asymmetry and prefrontal theta cordance towards escitalopram response prediction and MDD diagnosis, in a multi-site initiative. Methods: Resting EEG (eyes open and closed) was recorded from 64 electrodes in 44 depressed patients and 20 healthy controls at baseline, 2 weeks post-treatment and 8 weeks post-treatment. Clinical response was measured as change from baseline MADRS of 50% or more. EEG measures were analyzed (1) at baseline (2) at 2 weeks post-treatment and (3) as an ‘‘early change” variable defined as change in EEG from baseline to 2 weeks post-treatment. Results: At baseline, responders exhibited greater absolute alpha power in the left hemisphere versus the right while non-responders showed the opposite. Responders further exhibited a cortical asymmetry of greater right relative to left activity in parietal areas. Groups also differed in baseline relative delta power with responders showing greater power in the right hemisphere versus the left while non-responders showed the opposite. At 2 weeks post-treatment, responders exhibited greater absolute beta power in the left hemisphere relative to right and the opposite was noted for non-responders. The opposite pattern was noted for absolute and relative delta power at 2 weeks post-treatment. Responders exhibited early reduction in relative alpha power and early increments in relative theta power. Non-responders showed a significant early increase in prefrontal theta cordance. Absolute delta power helped distinguish MDD patients from healthy controls. Conclusions: Hemispheric asymmetries in the alpha and delta bands at pre-treatment baseline and at 2 weeks post-treatment have moderate to moderately strong predictive utility towards antidepressant treatment response. These findings have significant potential for improving clinical practice in psychiatry by eventually guiding clinical choice of treatments. This would greatly benefit patients awaiting relief from depressive symptoms as treatment optimization would help overcome problems associated with delayed recovery. Our results also indicate that resting EEG activity may have clinical utility in predicting MDD diagnosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite its large impact on the individual and society, we currently have only a rudimentary understanding of the biological basis of Major Depressive Disorder, even less so in adolescent populations. This thesis focuses on two research questions. First, how do adolescents with depression differ from adolescents who have never been depressed on (1a) brain morphology and (1b) DNA methylation? We studied differences in the fronto-limbic system (a collection of areas responsible for emotion regulation) and methylation at the serotonin transporter (SLC6A4) and FK506 binding protein gene (FKBP5) genes (two genes strongly linked to stress regulation and depression). Second, how does childhood trauma, which is known to increase risk for depression, affect (2a) brain development and (2b) SLC6A4 and FKBP5 methylation? Further, (2c) how might DNA methylation explain how trauma affects brain development in depression? We studied these questions in 24 adolescent depressed patients and 21 controls. We found that (1a) depressed adolescents had decreased left precuneus volume and greater volume of the left precentral gyrus compared to controls; however, no differences in fronto-limbic morphology were identified. Moreover, (1b) individuals with depression had lower levels of FKBP5 methylation than controls. In line with our second hypothesis (2a) greater levels of trauma were associated with decreased volume of a number of fronto-limbic regions. Further, we found that (2b) greater trauma was associated with decreased SLC6A4, but not FKBP5, methylation. Finally, (2c) greater FKBP5, but not SLC6A4, methylation was associated with decreased volume of a number of fronto-limbic regions. The results of this study suggest an association among trauma, DNA methylation and brain development in youth, but the direction of these relationships appears to be inconsistent. Future studies using a longitudinal design will be necessary to clarify these results and help us understand how the brain and epigenome change over time in depressed youth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic and environmental factors interact to influence vulnerability for internalizing psychopathology, including Major Depressive Disorder (MDD). The mechanisms that account for how environmental stress can alter biological systems are not yet well understood yet are critical to develop more accurate models of vulnerability and targeted interventions. Epigenetic influences, and more specifically, DNA methylation, may provide a mechanism by which stress could program gene expression, thereby altering key systems implicated in depression, such as frontal-limbic circuitry and its critical role in emotion regulation. This thesis investigated the role of environmental factors from infancy and throughout the lifespan affecting the serotonergic (5-HT) system in the vulnerability to and treatment of depression and anxiety and potential underlying DNA methylation processes. First, we investigated the contributions of additive genetic vs. environmental factors on an early trait phenotype for depression (negative emotionality) in infants and their stability over time in the first 2 years of life. We provided evidence of the substantial contributions of both genetic and shared environmental factors to this trait, as well as genetically- and environmentally- mediated stability and innovation. Second, we studied how childhood environmental stress is associated with peripheral DNA methylation of the serotonin transporter gene, SLC6A4, as well as long-term trajectories of internalizing behaviours. There was a relationship between childhood psychosocial adversity and SLC6A4 methylation in males, as well as between SLC6A4 methylation and internalizing trajectory in both sexes. Third, we investigated changes in emotion processing and epigenetic modification of the SLC6A4 gene in depressed adolescents before and after Mindfulness-Based Cognitive Therapy (MBCT). The alterations from pre- to post-treatment in connectivity between the ACC and other network regions and SLC6A4 methylation suggested that MBCT may work to optimize the connectivity of brain networks involved in cognitive control of emotion as well as also normalize the relationship between SLC6A4 methylation and activation patterns in frontal-limbic circuitry. Our results from these three studies strengthen the theory that environmental influences are critical in establishing early vulnerability factors for MDD, driving epigenetic processes, and altering brain processes as an individual undergoes treatment, or experiences relapse.