2 resultados para Degraded steppe
em QSpace: Queen's University - Canada
Resumo:
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a human plasma zymogen that acts as a molecular link between the coagulation and fibrinolytic cascades. TAFI can be activated by thrombin and plasmin but the reaction is enhanced significantly when thrombin is in a complex with the endothelial cofactor thrombomodulin (TM). The in vitro properties of TAFI have been extensively characterized. Activated TAFI (TAFIa) is a thermally unstable enzyme that attenuates fibrinolysis by catalyzing the removal of basic residues from partially degraded fibrin. The in vivo role of the TAFI pathway, however, is poorly defined and very little is known about the role of different activators in regulating the TAFI pathway. In the present study, we have constructed and characterized various TAFI mutants that are resistant to activation by specific activators. Based on peptide sequence studies, these mutants were constructed by altering key amino acid residues surrounding the scissile R92-A93 bond. We measured the thermal stabilities of all our mutants and found them to be similar to wild type TAFI. We have identified that the TAFI mutants P91S, R92K, and S90P are impaired in activation by thrombin or thrombin-TM, thrombin alone, and thrombin alone or plasmin, respectively. The TAFI mutants A93V and S94V were predicted to be resistant to activation by plasmin but this was not observed. The triple mutant, DVV was not activated by any of the aforementioned activators. Finally, we have used in vitro fibrin clot lysis assays to evaluate the antifibrinolytic potential of our variants and were able to correlate their effectiveness with their respective activation kinetics. In summary, we have developed activation resistant TAFI variants that can potentially be used to explore the role of the TAFI pathway in vivo.
Resumo:
Elevated plasma concentrations of lipoprotein(a) (Lp(a)) are associated with increased risk of atherothrombotic disease. Lp(a) is a unique lipoprotein consisting of a low density lipoprotein-like moiety covalently linked to apolipoprotein(a) (apo(a)), a homologue of the fibrinolytic proenzyme plasminogen. Apo(a) is extremely heterogeneous in size with small isoforms being independently associated with increased cardiovascular risk. Several in vitro and in vivo studies have shown that Lp(a)/apo(a) can inhibit tissue-type plasminogen activator (tPA)-mediated plasminogen activation on fibrin surfaces, although the mechanism of inhibition by apo(a) remains controversial. Essential to fibrin clot lysis are a number of plasmin-dependent positive feedback reactions that enhance the efficiency of plasminogen activation, including the plasmin-mediated conversion of Glu1-plasminogen to Lys78-plasminogen. Additionally, abnormal fibrin clot structures have been associated with both an increased risk of cardiovascular disease and elevated Lp(a) levels. Similarly, oxidized phospholipids have been implicated in the development of cardiovascular disease, and are not only preferentially carried by Lp(a) in the plasma but have also been shown to covalently-modify both apo(a) and plasminogen. In this thesis, we built upon the understanding of the role of apo(a) in plasminogen activation on the fibrin/degraded fibrin surface by determining that: (i) apo(a) inhibits plasmin-mediated Glu1-plasminogen to Lys78-plasminogen conversion and identifying the critical domains in apo(a) responsible for this effect, (ii) apo(a) isoform size does not affect either the inhibition of tPA-mediated plasminogen activation or the inhibition of plasmin-mediated Glu1-plasminogen to Lys78-plasminogen conversion, (iii) apo(a) modifies fibrin clot structure to form more dense clots with thinner fibers and reduced permeability, modifications that enhance the ability of apo(a) to inhibit tPA-mediated plasminogen activation and (iv) the phosphorus content of apo(a) affects its ability to inhibit tPA-mediated plasminogen activation and the phosphorus content of plasminogen affects its ability to be activated by tPA. By understanding these individual reactions, each of which has the potential to affect the broader fibrin clot lysis process, we have expanded our understanding of the overall effect of Lp(a)/apo(a) in the inhibition of plasminogen activation on the fibrin/degraded fibrin surface and thus broadened our understanding of how Lp(a)/apo(a) may mediate the inhibition of thrombolysis in vivo.