2 resultados para DOPAMINE AGONISTS
em QSpace: Queen's University - Canada
Resumo:
The neurotransmitter dopamine (DA) plays an essential role in reward-related incentive learning, whereby neutral stimuli gain the ability to elicit approach and other responses. In an incentive learning paradigm called conditioned activity, animals receive a stimulant drug in a specific environment over the course of several days. When then placed in that environment drug-free, they generally display a conditioned hyperactive response. Modulating DA transmission at different time points during the paradigm has been shown to disrupt or enhance conditioning effects. For instance, blocking DA D2 receptors before sessions generally impedes the acquisition of conditioned activity. To date, no studies have examined the role of D2 receptors in the consolidation phase of conditioned activity; this phase occurs immediately after acquisition and involves the stabilization of memories for long-term storage. To investigate this possible role, I trained Wistar rats (N = 108) in the conditioned activity paradigm produced by amphetamine (2.0 mg/kg, intraperitoneally) to examine the effects of the D2 antagonist haloperidol (doses 0.10, 0.25, 0.50, 0.75, 1.0, & 2.0 mg/kg, intraperitoneally) administered 5 min after conditioning sessions. Two positive control groups received haloperidol 1 h before conditioning sessions (doses 1.0 mg/kg and 2.0 mg/kg). The results revealed that post-session haloperidol at all doses tested did not disrupt the consolidation of conditioned activity, while pre-session haloperidol at 2.0 mg/kg prevented acquisition, with the 1.0 mg/kg group trending toward a block. Additionally, post-session haloperidol did not diminish activity during conditioning days, unlike pre-session haloperidol. One possible reason for these findings is that the consolidation phase may have begun earlier than when haloperidol was administered, since the conditioned activity paradigm uses longer learning sessions than those generally used in consolidation studies. Future studies may test if conditioned activity can be achieved with shorter sessions; if so, haloperidol would then be re-tested at an earlier time point. D2 receptor second messenger systems may also be investigated in consolidation. Since drug-related incentive stimuli can evoke cravings in those with drug addiction, a better understanding of the mechanisms of incentive learning may lead to the development of solutions for these individuals.
Resumo:
Dendritic cells (DCs) secrete cytokines such as interleukin-23 (IL-23) when stimulated with certain Toll-like receptor (TLR) agonists and infected with pathogens such as P. aeruginosa. IL- 23 is a proinflammatory cytokine that plays a critical role in the proliferation and differentiation of the IL-17 producing Th17- CD4 T helper cells. The lack of efficient cytokine production from antigen-presenting cells, such as DCs, can impact CD4 differentiation and thus impair the immune responses against pathogens. Clearance of some bacterial infections, such as Klebsiella pneumonia and Listeria monocytogenes has been shown to be dependent on the induction of IL-23 and therefore, deregulation of these cytokines as a direct result of virus infection may impede immune responses to secondary infections. Here, an inhibition of TLR ligand or P. aeruginosa-induced IL- 23 expression in Lymphocytic Choriomeningitis Virus (LCMV)-infected bone marrow-derived dendritic cells (BMDCs) has been demonstrated, indicating that an important function of these cells is disrupted during virus/bacterial coinfection. While production of TNF-α was unaffected in LPS stimulated cells, TNF-α was significantly inhibited in bacterium infected cells by LCMV. Type I IFN in LPS or LCMV infected cell was not detected and therefore, ruling out the possibility of cytokine suppression by Type I IFN. The production of IL-10 was high in BMDCs infected with LCMV and stimulated with LPS or bacteria. Analysis of multiple cytokines produced in this coinfection model demonstrated that LCMV infection impacts specific cytokine production upon LPS or bacterium infection, which may be important for bacterial clearance. This data is important for future immunotherapy use in viral/bacterial coinfection scenarios.