2 resultados para Cytosine déaminase de Saccharomyces cerevisae (yCD)

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinesins are molecular motors that transport intracellular cargos along microtubules (MTs) and influence the organization and dynamics of the MT cytoskeleton. Their force-generating functions arise from conformational changes in their motor domain as ATP is bound and hydrolyzed, and products are released. In the budding yeast Saccharomyces cerevisiae, the Kar3 kinesin forms heterodimers with one of two non-catalytic kinesin-like proteins, Cik1 and Vik1, which lack the ability to bind ATP, and yet they retain the capacity to bind MTs. Cik1 and Vik1 also influence and respond to the MT-binding and nucleotide states of Kar3, and differentially regulate the functions of Kar3 during yeast mating and mitosis. The mechanism by which Kar3/Cik1 and Kar3/Vik1 dimers operate remains unknown, but has important implications for understanding mechanical coordination between subunits of motor complexes that traverse cytoskeletal tracks. In this study, we show that the opportunistic human fungal pathogen Candida albicans (Ca) harbors a single version of this unique form of heterodimeric kinesin and we present the first in vitro characterization of this motor. Like its budding yeast counterpart, the Vik1-like subunit binds directly to MTs and strengthens the MT-binding affinity of the heterodimer. However, in contrast to ScKar3/Cik1 and ScKar3/Vik1, CaKar3/Vik1 exhibits weaker overall MT-binding affinity and lower ATPase activity. Preliminary investigations using a multiple motor motility assay indicate CaKar3/Vik1 may not be motile. Using a maltose binding protein tagging system, we determined the X-ray crystal structure of the CaKar3 motor domain and observed notable differences in its nucleotide-binding pocket relative to ScKar3 that appear to represent a previously unobserved state of the active site. Together, these studies broaden our knowledge of novel kinesin motor assemblies and shed new light on structurally dynamic regions of Kar3/Vik1-like motor complexes that help mediate mechanical coordination of its subunits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinesins are motor proteins that convert chemical energy from ATP hydrolysis into mechanical energy used to generate force along microtubules, transporting organelles, vesicles, and proteins within the cell. Kar3 kinesins are microtubule minus-end-directed motors with pleiotropic functions in mating and mitosis of budding and fission yeast. In Saccharomyces cerevisiae, Kar3 is multifunctionalized by two non-catalytic companion proteins, Vik1 and Cik1. A Kar3-like kinesin and a single Vik1/Cik1 ortholog are also expressed by the filamentous fungus Ashbya gossypii, which exhibits different nuclear movement challenges and unique microtubule dynamics from its yeast relatives. We hypothesized that these differences in A. gossypii physiology could translate into interesting and novel differences in its versions of Kar3 and Vik1/Cik1. Presented here is a structural and functional analysis of recombinantly expressed and purified forms of these motor proteins. Compared to the previously published S. cerevisiae Kar3 motor domain structure (ScKar3MD), AgKar3MD displays differences in the conformation of the ATPase pocket. Perhaps it is not surprising then that we observed the maximal microtubule-stimulated ATPase rate (kcat) of AgKar3MD to be approximately 3-fold slower than ScKar3MD, and that the affinity of AgKar3MD for microtubules (Kd,MT) was lower than ScKar3MD. This may suggest that elements that compose the ATPase pocket and that participate in conformational changes required for efficient ATP hydrolysis or products release work differently for AgKar3 and ScKar3. There are also subtle structural differences in the disposition of the secondary structural elements in the small lobe (B1a, B1b, and B1c) at the edge of the motor domain of AgKar3 that may reflect the enhanced microtubule-depolymerization activity that we observed for this motor, or they could relate to its interactions with a different regulatory companion protein than its budding yeast counterpart. Although we were unable to gain experimentally determined high-resolution information of AgVik1, the results of Phyre2-based bioinformatics analyses may provide a structural explanation for the limited microtubule-binding activity we observed. These and other fundamental differences in AgKar3/Vik1 could explain divergent functionalities from the ScKar3/Vik1 and ScKar3/Cik1 motor assemblies.