3 resultados para Cognitive Behavioral Therapy (CGT)
em QSpace: Queen's University - Canada
Resumo:
Post-traumatic stress disorder (PTSD) has emerged as a key concern for military and veteran populations. This article describes what is being done programmatically and therapeutically to treat PTSD in military personnel and veterans returning from deployment. This scoping review demonstrates that (1) research published in this area has been rapidly increasing since its inception in the 1980s; (2) the vast majority of articles focus on cognitive-behavioral approaches to treatment, and this area of the literature presents strong evidence for these approaches; and (3) there is a lack of randomized controlled trials for treatments, such as art therapies and group therapies.
Resumo:
Anxiety disorders are the most prevalent form of psychopathology among children and adolescents. Because demand for treatment far exceeds availability, there is a need for alternative approaches that are engaging, accessible, cost-effective, and incorporate practice to reach as many youth as possible. One novel approach is a video game intervention called MindLight that uses two evidence-based strategies to target childhood anxiety problems. Using neurofeedback mechanics to train players to: (1) attend to positive rather than threatening stimuli and (2) down-regulate arousal during stressful situations, MindLight teaches children how to practice overcoming anxious thoughts and arousal in a fun and engaging context. The present study examined the effectiveness of MindLight versus online cognitive-behavioural therapy (CBT) based psychoeducation sessions as a comparison in reducing anxiety in a sample of 144 anxious children, which was measured in three ways: (1) anxiety symptoms, (2) state anxiety in response to stress, and (3) psychophysiological arousal in response to stress. Children between the ages of 8.05–17.78 years (M=13.61, SD=1.79) were randomly assigned to play MindLight or complete psychoeducation for five hours over three weeks. State anxiety and psychophysiological arousal were assessed in response to two stress tasks before and after exposure to MindLight or psychoeducation. Anxiety symptoms were also measured via a questionnaire. Overall, participants showed significant reductions in anxiety symptoms and state anxiety in response to stress, but not psychophysiological arousal in response to stress. Moreover, the magnitude of reductions in anxiety did not differ between interventions but by age and sex. Specifically, older participants showed a greater decrease in severity of state anxiety in response to a social stressor than younger participants and girls showed a greater decrease in severity of state anxiety in response to a cognitive stressor than boys. The present study suggests that playing MindLight results in similar reductions in anxiety as one of the more common means of delivering CBT principles to youth.
Resumo:
Stroke is a leading cause of death and permanent disability worldwide, affecting millions of individuals. Traditional clinical scores for assessment of stroke-related impairments are inherently subjective and limited by inter-rater and intra-rater reliability, as well as floor and ceiling effects. In contrast, robotic technologies provide objective, highly repeatable tools for quantification of neurological impairments following stroke. KINARM is an exoskeleton robotic device that provides objective, reliable tools for assessment of sensorimotor, proprioceptive and cognitive brain function by means of a battery of behavioral tasks. As such, KINARM is particularly useful for assessment of neurological impairments following stroke. This thesis introduces a computational framework for assessment of neurological impairments using the data provided by KINARM. This is done by achieving two main objectives. First, to investigate how robotic measurements can be used to estimate current and future abilities to perform daily activities for subjects with stroke. We are able to predict clinical scores related to activities of daily living at present and future time points using a set of robotic biomarkers. The findings of this analysis provide a proof of principle that robotic evaluation can be an effective tool for clinical decision support and target-based rehabilitation therapy. The second main objective of this thesis is to address the emerging problem of long assessment time, which can potentially lead to fatigue when assessing subjects with stroke. To address this issue, we examine two time reduction strategies. The first strategy focuses on task selection, whereby KINARM tasks are arranged in a hierarchical structure so that an earlier task in the assessment procedure can be used to decide whether or not subsequent tasks should be performed. The second strategy focuses on time reduction on the longest two individual KINARM tasks. Both reduction strategies are shown to provide significant time savings, ranging from 30% to 90% using task selection and 50% using individual task reductions, thereby establishing a framework for reduction of assessment time on a broader set of KINARM tasks. All in all, findings of this thesis establish an improved platform for diagnosis and prognosis of stroke using robot-based biomarkers.