2 resultados para CURVATURE
em QSpace: Queen's University - Canada
Resumo:
The sport of rowing has become more popular in the past decade. While it is a relatively low impact sport, injuries can occur, specifically to the ribs (Karlson K. A., 1998) and more often in female athletes (Hickey, Fricker, & McDonald , 1997). It has been proposed that as the athlete rows, applying a cyclical load to the body, the mid trapezius fatigues and is unable to resist the force produced during the drive phase (Warden S. J., Gutschlag, Wajswelner, & Crossley, 2002). Once this happens, the scapulae are then pulled anterio-laterally which increases the compression force on the ribs, increasing the risk of injury. The rowing motion of 12 female varsity and club rowers was tracked as they completed a fatiguing rowing test on a rowing ergometer. Results showed that the curvature of thoracic spine changed throughout the rowing cycle but did not change with increasing power level. The transverse shoulder angle decreased (the upper back was less straight) as power level increased (R2=-0.69±19), suggesting that the scapula moved anterio-laterally. This may be that as it tired, the mid-trapezius was unable to hold the scapulae in position. The decreasing transverse shoulder angle when the power level is increased indirectly supports the fatiguing of the retractor muscles as a mechanism of injury. It would be valuable to understand the limitations of each athlete and to be able to prescribe the optimal training zone to reduce the risk of injury.
Resumo:
Pipelines extend thousands of kilometers across wide geographic areas as a network to provide essential services for modern life. It is inevitable that pipelines must pass through unfavorable ground conditions, which are susceptible to natural disasters. This thesis investigates the behaviour of buried pressure pipelines experiencing ground distortions induced by normal faulting. A recent large database of physical modelling observations on buried pipes of different stiffness relative to the surrounding soil subjected to normal faults provided a unique opportunity to calibrate numerical tools. Three-dimensional finite element models were developed to enable the complex soil-structure interaction phenomena to be further understood, especially on the subjects of gap formation beneath the pipe and the trench effect associated with the interaction between backfill and native soils. Benchmarked numerical tools were then used to perform parametric analysis regarding project geometry, backfill material, relative pipe-soil stiffness and pipe diameter. Seismic loading produces a soil displacement profile that can be expressed by isoil, the distance between the peak curvature and the point of contraflexure. A simplified design framework based on this length scale (i.e., the Kappa method) was developed, which features estimates of longitudinal bending moments of buried pipes using a characteristic length, ipipe, the distance from peak to zero curvature. Recent studies indicated that empirical soil springs that were calibrated against rigid pipes are not suitable for analyzing flexible pipes, since they lead to excessive conservatism (for design). A large-scale split-box normal fault simulator was therefore assembled to produce experimental data for flexible PVC pipe responses to a normal fault. Digital image correlation (DIC) was employed to analyze the soil displacement field, and both optical fibres and conventional strain gauges were used to measure pipe strains. A refinement to the Kappa method was introduced to enable the calculation of axial strains as a function of pipe elongation induced by flexure and an approximation of the longitudinal ground deformations. A closed-form Winkler solution of flexural response was also derived to account for the distributed normal fault pattern. Finally, these two analytical solutions were evaluated against the pipe responses observed in the large-scale laboratory tests.