2 resultados para CELL-VOLUME REGULATION
em QSpace: Queen's University - Canada
Resumo:
Tourmaline from a gem-quality deposit in the Grenville province has been studied with X-ray diffraction, visible-near infrared spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, electron microprobe and optical measurements. The tourmaline is found within tremolite-rich calc-silicate pods hosted in marble of the Central Metasedimentary Belt. The crystals are greenish-greyish-brown and have yielded facetable material up to 2.09 carats in size. Using the classification of Henry et al. 2011 the tourmaline is classified as a dravite, with a representative formula shown to be (Na0.73Ca0.2380.032)(Mg2+2.913Fe2+0.057Ti4+0.030) (Al3+5.787Fe3+0.017Mg2+0.14)(Si6.013O18)(BO3)3(OH)3((OH,O)0.907F0.093). Rietveld analysis of powder diffraction data gives a = 15.9436(8) Å, c = 7.2126(7) Å and a unit cell volume of 1587.8 Å3. A polished thin section was cut perpendicular to the c-axis of one tourmaline crystal, which showed zoning from a dark brown core into a lighter rim into a thin darker rim and back into lighter zonation. Through the geochemical data, three key stages of crystal growth can be seen within this thin section. The first is the core stage which occurs from the dark core to the first colourless zone; the second is from this colourless zone increasing in brown colour to the outer limit before a sudden absence of colour is noted; the third is a sharp change from the end of the second and is entirely colourless. These events are the result of metamorphism and hydrothermal fluids resulting from nearby felsic intrusive plutons. Scanning electron microscope, and electron microprobe traverses across this cross-section revealed that the green colour is the result of iron present throughout the system while the brown colour is correlated with titanium content. Crystal inclusions in the tourmaline of chlorapatite, and zircon were identified by petrographic analysis and confirmed using scanning electron microscope data and occur within the third stage of formation.
Resumo:
Spontaneous fetal loss (25-40%) leading to decrease in litter size is a significant concern to the pork industry. A deficit in the placental vasculature has emerged as one of the important factors associated with fetal loss. During early pig pregnancy, the endometrium becomes enriched with immune cells recruited by conceptus-derived signals including specific chemokine stimuli. These immune cells assist in various aspects of placental development and angiogenesis. Recent evidence suggests that microRNAs (miRNAs: small non-coding RNAs that regulate gene expression) regulate immune cell development and their functions. In addition, intercellular communication including exchange of biomolecules (e.g. miRNAs) between the conceptus and endometrium regulate key developmental processes during pregnancy. To understand the biological significance of immune cell enrichment, regulation of their functions by miRNAs and transfer of miRNAs across the maternal fetal-interface, we screened specific sets of chemokines and pro- and anti-angiogenic miRNAs in endometrial lymphocytes (ENDO LY), endometrium, and chorioallantoic membrane (CAM) isolated from conceptus attachment sites (CAS) during early, gestation day (gd)20 and mid-pregnancy (gd50). We report increased expression of selected chemokines including CXCR3 and CCR5 in ENDO LY and CXCL10, CXCR3, CCL5, CCR5 in endometrium associated with arresting CAS at gd20. Some of these differences were also noted at the protein level (CXCL10, CXCR3, CCL5, and CCR5) in endometrium and CAM. We report for the first time significant differences for miRNAs involved in immune cell-derived angiogenesis (miR-296-5P, miR-150, miR-17P-5P, miR-18a, and miR-19a) between ENDO LY associated with healthy and arresting CAS. Significant differences were also found in endometrium and CAM for some miRNAs (miR-17-5P, miR-18a, miR-15b-5P, and miR-222). Finally, we confirm that placenta specific-exosomes contain proteins and 14 select miRNAs including miR-126-5P, miR-296-5P, miR-16, and miR-17-5P that are of relevance to early implantation events. We further demonstrated the bidirectional exosome shuttling between porcine trophectoderm cells (PTr2) and porcine aortic endothelial cells (PAOEC). PTr2-derived exosomes were able to modulate the endothelial cell proliferation that is crucial for the establishment of pregnancy. Our data unravels the selected chemokines and miRNAs associated with immune cell-regulated angiogenesis and reconfirm that exosome mediated cell-cell communication opens-up new avenues to understand porcine pregnancy.