1 resultado para Bodily fluids.
em QSpace: Queen's University - Canada
Resumo:
An all fiber-optical method to monitor densities and viscosities of liquids utilizing a steel cantilever (4 x 0.3 x 0.08 cm3) is presented. The actuation is performed by photothermally heating the cantilever at its base with an intensity-modulated 808 nm diode laser. The cantilever vibrations are picked up by an in-fiber Fabry Perot cavity sensor attached along the length of the cantilever. The fluid properties can be related to the resonance characteristics of the cantilever, e.g. a shift in the resonance frequency corresponds to a change in fluid density, and the width of the resonance peak gives information on the dynamic viscosity after calibration of the system. Aqueous glycerol, sucrose and ethanol samples in the range of 0.79–1.32 gcm−3 (density) and 0.89–702 mPas (viscosity) were used to investigate the limits of the sensor. A good agreement with literature values could be found with an average deviation of around 10 % for the dynamic viscosities, and 5–16 % for the mass densities. A variety of clear and opaque commercial spirits and an unknown viscous sample, e.g. home-made maple syrup, were analyzed and compared to literature values. The unique detection mechanism allows for the characterization of opaque samples and is superior to conventional microcantilever sensors. The method is expected to be beneficial in various industrial sectors such as quality control of food samples.