2 resultados para Automatic virtual camera control

em QSpace: Queen's University - Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a solution to part of the problem of making robotic or semi-robotic digging equipment less dependant on human supervision. A method is described for identifying rocks of a certain size that may affect digging efficiency or require special handling. The process involves three main steps. First, by using range and intensity data from a time-of-flight (TOF) camera, a feature descriptor is used to rank points and separate regions surrounding high scoring points. This allows a wide range of rocks to be recognized because features can represent a whole or just part of a rock. Second, these points are filtered to extract only points thought to belong to the large object. Finally, a check is carried out to verify that the resultant point cloud actually represents a rock. Results are presented from field testing on piles of fragmented rock. Note to Practitioners—This paper presents an algorithm to identify large boulders in a pile of broken rock as a step towards an autonomous mining dig planner. In mining, piles of broken rock can contain large fragments that may need to be specially handled. To assess rock piles for excavation, we make use of a TOF camera that does not rely on external lighting to generate a point cloud of the rock pile. We then segment large boulders from its surface by using a novel feature descriptor and distinguish between real and false boulder candidates. Preliminary field experiments show promising results with the algorithm performing nearly as well as human test subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interacting with a computer system in the operating room (OR) can be a frustrating experience for a surgeon, who currently has to verbally delegate to an assistant every computer interaction task. This indirect mode of interaction is time consuming, error prone and can lead to poor usability of OR computer systems. This thesis describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the OR. The device was tested extensively in comparison to a mouse and delegated dictation with seven surgeons, eleven residents, and five graduate students. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer and makes use of an existing tool in the OR. We performed a user study to determine its effectiveness in allowing a user to perform all the tasks they would be expected to perform on an OR computer system during a computer-assisted surgery. Dictation was found to be superior to the joystick in qualitative measures, but the joystick was preferred over dictation in user satisfaction responses. The mouse outperformed both joystick and dictation, but it is not a readily accepted modality in the OR.