1 resultado para Automatic sampler
em QSpace: Queen's University - Canada
Filtro por publicador
- Repository Napier (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (8)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (13)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (23)
- Aston University Research Archive (31)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (80)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (80)
- Brock University, Canada (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CentAUR: Central Archive University of Reading - UK (43)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (12)
- Cochin University of Science & Technology (CUSAT), India (8)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (37)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (17)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (11)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (3)
- National Center for Biotechnology Information - NCBI (1)
- Publishing Network for Geoscientific & Environmental Data (32)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório da Produção Científica e Intelectual da Unicamp (18)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (54)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (15)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (13)
- Scielo Uruguai (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad de Alicante (9)
- Universidad Politécnica de Madrid (74)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (5)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (7)
- Université de Lausanne, Switzerland (41)
- Université de Montréal, Canada (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (125)
- University of Queensland eSpace - Australia (50)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Resumo:
This paper presents a solution to part of the problem of making robotic or semi-robotic digging equipment less dependant on human supervision. A method is described for identifying rocks of a certain size that may affect digging efficiency or require special handling. The process involves three main steps. First, by using range and intensity data from a time-of-flight (TOF) camera, a feature descriptor is used to rank points and separate regions surrounding high scoring points. This allows a wide range of rocks to be recognized because features can represent a whole or just part of a rock. Second, these points are filtered to extract only points thought to belong to the large object. Finally, a check is carried out to verify that the resultant point cloud actually represents a rock. Results are presented from field testing on piles of fragmented rock. Note to Practitioners—This paper presents an algorithm to identify large boulders in a pile of broken rock as a step towards an autonomous mining dig planner. In mining, piles of broken rock can contain large fragments that may need to be specially handled. To assess rock piles for excavation, we make use of a TOF camera that does not rely on external lighting to generate a point cloud of the rock pile. We then segment large boulders from its surface by using a novel feature descriptor and distinguish between real and false boulder candidates. Preliminary field experiments show promising results with the algorithm performing nearly as well as human test subjects.