2 resultados para Analytic-numerical solutions

em QSpace: Queen's University - Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hurricane Sandy was the largest storm on historical record in the Atlantic Ocean basin with extensive coastal damage caused by large waves and high storm surge. The primary objectives of this thesis are to compare and evaluate three different spatially-varying surface wind fields of Hurricane Sandy to investigate the impact of the differences between the complex wind fields on predictions of the sea surface evolution, and to evaluate the impact of the storm on the hydrodynamics in Great South Bay (GSB) and the discharge of ocean water into the back-barrier bay from overwash over Fire Island. Three different spatially-varying surface wind fields were evaluated and compared to wind observations, including the parametric Holland (1980) model (H80), the parametric Generalized Asymmetric Holland Model (GAHM), and results from the WeatherFlow Regional Atmospheric Modelling System (WRAMS). The winds were used to drive the coupled Delft3D-SWAN hydrodynamic and ocean wave models on a regional grid. The results indicate that the WRAMS wind field produces wave model predictions in the best agreement with significant wave height observations, followed by the GAHM and H80 wind fields and that a regional atmospheric wind model is best for hindcasting hurricane waves and water levels when detailed observations are available, while a parametric vortex model is best for forecasting hurricane sea surface conditions. Using a series of four connected Delft3D-SWAN grids to achieve finer resolution over Fire Island and GSB, a higher resolution WRAMS was used to predict waves and storm surge. The results indicate that strong local winds have the largest influence on water level fluctuations in GSB. Three numerical solutions were conducted with varying extents of barrier island overwash. The simulations allowing for minor and major overwash indicated good agreement with observations in the east end of GSB and suggest that island overwash provided a significant contribution of ocean water to GSB during the storm. Limiting the overwash in the numerical model directly impacts the total discharge into GSB from the ocean through existing inlets. The results of this study indicate that barrier island overwash had a significant impact on the water levels in eastern GSB.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-frequency Eddy Current (EC) inspection with a transmit-receive probe (two horizontally offset coils) is used to monitor the Pressure Tube (PT) to Calandria Tube (CT) gap of CANDU® fuel channels. Accurate gap measurements are crucial to ensure fitness of service; however, variations in probe liftoff, PT electrical resistivity, and PT wall thickness can generate systematic measurement errors. Validated mathematical models of the EC probe are very useful for data interpretation, and may improve the gap measurement under inspection conditions where these parameters vary. As a first step, exact solutions for the electromagnetic response of a transmit-receive coil pair situated above two parallel plates separated by an air gap were developed. This model was validated against experimental data with flat-plate samples. Finite element method models revealed that this geometrical approximation could not accurately match experimental data with real tubes, so analytical solutions for the probe in a double-walled pipe (the CANDU® fuel channel geometry) were generated using the Second-Order Vector Potential (SOVP) formalism. All electromagnetic coupling coefficients arising from the probe, and the layered conductors were determined and substituted into Kirchhoff’s circuit equations for the calculation of the pickup coil signal. The flat-plate model was used as a basis for an Inverse Algorithm (IA) to simultaneously extract the relevant experimental parameters from EC data. The IA was validated over a large range of second layer plate resistivities (1.7 to 174 µΩ∙cm), plate wall thickness (~1 to 4.9 mm), probe liftoff (~2 mm to 8 mm), and plate-to plate gap (~0 mm to 13 mm). The IA achieved a relative error of less than 6% for the extracted FP resistivity and an accuracy of ±0.1 mm for the LO measurement. The IA was able to achieve a plate gap measurement with an accuracy of less than ±0.7 mm error over a ~2.4 mm to 7.5 mm probe liftoff and ±0.3 mm at nominal liftoff (2.42±0.05 mm), providing confidence in the general validity of the algorithm. This demonstrates the potential of using an analytical model to extract variable parameters that may affect the gap measurement accuracy.