2 resultados para Access and Benefit Sharing

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops a simple model of the post-secondary education system in Canada that provides a useful basis for thinking about issues of capacity and access. It uses a supply-demand framework, where demand comes on the part of individuals wanting places in the system, and supply is determined not only by various directives and agreements between educational ministries and institutions (and other factors), but also the money available to universities and colleges through tuition fees. The supply and demand curves are then put together with a stylised tuition-setting rule to describe the “market” of post-secondary schooling. This market determines the number of students in the system, and their characteristics, especially as they relate to “ability” and family background, the latter being especially relevant to access issues. The manner in which various changes in the system – including tuition fees, student financial aid, government support for institutions, and the returns to schooling – are then discussed in terms of how they affect the number of students and their characteristics, or capacity and access.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visualization and interpretation of geological observations into a cohesive geological model are essential to Earth sciences and related fields. Various emerging technologies offer approaches to multi-scale visualization of heterogeneous data, providing new opportunities that facilitate model development and interpretation processes. These include increased accessibility to 3D scanning technology, global connectivity, and Web-based interactive platforms. The geological sciences and geological engineering disciplines are adopting these technologies as volumes of data and physical samples greatly increase. However, a standardized and universally agreed upon workflow and approach have yet to properly be developed. In this thesis, the 3D scanning workflow is presented as a foundation for a virtual geological database. This database provides augmented levels of tangibility to students and researchers who have little to no access to locations that are remote or inaccessible. A Web-GIS platform was utilized jointly with customized widgets developed throughout the course of this research to aid in visualizing hand-sized/meso-scale geological samples within a geologic and geospatial context. This context is provided as a macro-scale GIS interface, where geophysical and geodetic images and data are visualized. Specifically, an interactive interface is developed that allows for simultaneous visualization to improve the understanding of geological trends and relationships. These developed tools will allow for rapid data access and global sharing, and will facilitate comprehension of geological models using multi-scale heterogeneous observations.