1 resultado para AUTOPHOSPHORYLATION
em QSpace: Queen's University - Canada
Resumo:
The Tribbles Homologues are a family of three eukaryotic pseudokinases (Trb1, Trb2, Trb3) that act as allosteric inhibitors and regulatory scaffold sites in pathways governing adipogenesis, cell proliferation and insulin signaling. The Tribbles Homologues have the same overall tertiary structure of the eukaryotic protein kinase domain, but lack multiple residues necessary to catalysis in the nucleotide-binding P-loop and the Mg2+-coordinating DFG motif. Trb1 has been shown conclusively to be incapable of binding ATP, whereas a recent study presents evidence that Trb2 autophosphorylates independently of Mg2+ in vitro. This finding is surprising given the high degree of sequence similarity between the two proteins (71%), and suggests unique nucleotide binding and phosphotransfer mechanisms. The goal of this project was to investigate whether Trb2 possesses kinase activity or not and determine its structural basis. A method for the high-yield recombinant expression and purification of stable Trb2 was developed. Trb2 nucleotide binding and autophosphorylation could not be detected across multiple experimental approaches, including thermal shift assays, MANT-ATP fluorescence, radiolabeled phosphate incorporation, and nonspecific ATPase activity assays. Further characterization also revealed that Trb2 forms homomultimers with possible functional consequences, and extensive crystallization screening has yielded multiple promising conditions that could produce diffraction-quality crystals with further optimization. This project explores the difficulties in functionally characterizing putatively active pseudokinases, and proposes a structural basis for the conserved pseudokinase features of the Tribbles homologues.