3 resultados para ASP.net
em QSpace: Queen's University - Canada
Resumo:
The actin cytoskeleton is a dynamic and complex structure in fission yeast that plays a major function in many cell processes including cellular growth, septa formation, endocytosis and cellular division. Computational studies have shown that Arp2p, which forms part of the Arp2/3 complex, is a potential substrate of NatB acetyltransferase which has specificity for proteins possessing an N-terminal Met-Asp or Met-Glu sequence motif. In arm1- mutants the loss of function of Arm1p, an auxillary subunit required for NatB activity, results in a temperature sensitive phenotype characterized by multiple septa, failure of endocytosis, and the inability to form actin cables. A temperature sensitive mutant of Schizosaccharomyces pombe arp2 gene exhibits a similar phenotype as seen by the formation of improper septa, slow growth, and the delocalization of actin patches. Four expression vectors encoding the open reading frames of arp2 and cdc8 (tropomyosin) were constructed with a modification changing the second residue to a Histidine, believed to mimic the charge distribution of natural acetylation by NatB. Constructs tested in normal yeast strains remained viable and grew normally in the presence of Met-His Arp2p and tropomyosin. Analysis of their ability to suppress the mutant phenotypes of arp2-1 and arm1- mutants is an area of research to be explored in future studies.
Resumo:
Climate change is occurring most rapidly in the Arctic where warming has been twice as fast as the rest of the globe over the last few decades. Arctic soils contain a vast store of carbon and warmer arctic soils may mediate current atmospheric CO2 concentrations and global warming trends. Warmer soils could increase nutrient availability to plants, leading to increased primary production and sequestration of CO2. Presumably because of these effects of warming on shrub ecosystems, shrubs have been expanding across the arctic over the last 50 years, Arctic shrub expansion may track or cause changes in nutrient cycling and availability that favour growth of larger, denser shrubs. This study aimed at measuring gross and net nitrogen cycling rates, major soil nitrogen and carbon pool sizes, and elucidating controls on nutrient cycling and availability between a mesic birch (Betula nana) hummock tundra ecosystem and an ecosystem of dense, tall, birch (B. nana) shrubs. Nitrogen cycling and availability was enhanced at the tall shrub ecosystem compared to the birch hummock ecosystem. Net nitrogen immobilization by microbes was approximately threefold greater at the tall shrub ecosystem. This was in part because of larger microbial biomass nitrogen and carbon (interpreted as a larger microbial community) at the tall shrub ecosystem. Nitrogen inputs via litter were significantly larger at the tall shrub ecosystem and were hypothesized to be the major contributor to the higher dissolved organic and inorganic nitrogen pools in the soil at the tall shrub ecosystem. The results from this study suggest a positive feedback mechanism between litter nitrogen inputs and the enhancement of nitrogen cycling and availability as a driver of shrub expansion across the Arctic.
Resumo:
Elevated plasma concentrations of lipoprotein(a) [Lp(a)] have been identified as an independent risk factor for vascular diseases including coronary heart disease and stroke. In the current study, we have examined the binding and degradation of recombinant forms of apolipoprotein(a) [r-apo(a)], the unique kringle-containing moiety of Lp(a), using a cultured cell model. We found that the incubation of human hepatoma (HepG2) cells with an iodinated 17 kringle-containing (17K) recombinant form of apo(a) resulted in a two-component binding system characterized by a high affinity (Kd = 12 nM), low capacity binding site, and a low affinity (Kd = 249 nM), high capacity binding site. We subsequently determined that the high affinity binding site on HepG2 cells corresponds to the LDL receptor. In the HepG2 cell model, association of apo(a) with the LDL receptor was shown to be dependent on the formation of Lp(a) particles from endogenous LDL. Using an apo(a) mutant incapable of binding to the high affinity site through its inability to form Lp(a) particles (17KΔLBS7,8), we further demonstrated that the LDL receptor does not participate in Lp(a) catabolism. The low affinity binding component observed on HepG2 cells, familial hypercholesterolemia (FH) fibroblasts and human embryonic kidney (HEK) 293 cells may correspond to a member(s) of the plasminogen receptor family, as binding to this site(s) was decreased by the addition of the lysine analogue epsilon-aminocaproic acid. The lysine-dependent nature of the low affinity binding site was further confirmed in HepG2 binding studies utilizing r-apo(a) species with impaired lysine binding ability. We observed a reduction maximum binding capacity for 17K r-apo(a) variants lacking the strong lysine binding site (LBS) in kringle IV type 10 (17KΔAsp) and the very weak LBS in kringle V (17KΔV). Degradation of Lp(a)/apo(a) was found to be mediated exclusively by the low affinity component on both HepG2 cells and FH fibroblasts. Fluorescence confocal microscopy, using the 17K r-apo(a) variant fused to green fluorescent protein, further confirmed that degradation by the low affinity component on HepG2 cells does not proceed by the activity of cellular lysosomes. Taken together, these data suggest a potentially significant route for Lp(a)/apo(a) clearance in vivo.