2 resultados para 860[82]-31.09
em QSpace: Queen's University - Canada
Resumo:
Introspection is the process by which individuals question their attitudes; either questioning why they hold their attitudes (Why introspection), or how they feel about a particular attitude object (How introspection). Previous research has suggested that Why-introspection induces attitude change, and that Why and How introspection influence attitude-behaviour consistency,persuasion, and other effects. Generally, psychologists have assumed that affective and cognitive attitude bases are the mechanism by which introspection leads to these effects. Leading perspectives originating from these findings suggest that either Why introspection changes the content of cognitive attitude bases (the skewness hypothesis), or increases the salience of cognitive attitude bases (the dominance hypothesis); whereas How introspection may increase the salience of affective attitude bases (another part of the dominance hypothesis). However, direct evidence for these mechanisms is lacking, and the distinction between structural and meta bases has not been considered. Two studies investigated this gap in the existing literature. Both studies measured undergraduate students’ attitudes and attitude bases (both structural and meta, affective and cognitive) before and after engaging in an introspection manipulation (Why introspection / How introspection / control), and after reading a (affective / cognitive) persuasive passage about the attitude object. No evidence was found supporting either the skewness or dominance hypotheses. Furthermore, previous introspection effects were not replicated in the present data. Possible reasons for these null findings are proposed, and several unexpected effects are examined.
Resumo:
The heat transfer from a hot primary flow stream passing over the outside of an airfoil shaped strut to a cool secondary flow stream passing through the inside of that strut was studied experimentally and numerically. The results showed that the heat transfer on the inside of the strut could be reliably modeled as a developing flow and described using a power law model. The heat transfer on the outside of the strut was complicated by flow separation and stall on the suction side of the strut at high angles of attack. This separation was quite sensitive to the condition of the turbulence in the flow passing over the strut, with the size of the separated wake changing significantly as the mean magnitude and levels of anisotropy were varied. The point of first stall moved by as much as 15% of the chord, while average heat transfer levels changed by 2-5% as the inlet condition was varied. This dependence on inlet conditions meant that comparisons between experiment and steady RANS based CFD were quite poor. Differences between the CFD and experiment were attributed to anisotropic and unsteady effects. The coupling between the two flows was shown to be quite low - that is to say, heat transfer coefficients on both the inner and outer surfaces of the strut were relatively unaffected by the temperature of the strut, and it was possible to predict the temperature on the strut surface quite reliably using heat transfer data from decoupled tests, especially for CFD simulations.