2 resultados para 650200 Mining and Extraction
em QSpace: Queen's University - Canada
Resumo:
Lithium is used in the cathode and electrolyte of rechargeable batteries in many portable electronics and electric vehicles, and is thus seen as a critical component of modern technology (Gruber et al., 2011). Electric vehicles are promoted as a way to reduce carbon emissions associated with the transportation sector, which accounts for 14.3% of anthropogenic greenhouse gas emissions (OECD International Transport Forum, 2010). However, the sustainability of lithium procurement will influence the overall environmental impact of this proposed “green” solution. It is estimated that 66% of the world’s lithium resource is contained in natural brines, 24% in pegmatites, and 8% in sedimentary rocks such as hectorite clays (Gruber et al., 2011). It has been shown that “[r]ecycling of lithium from Li-ion batteries may be a critical factor in balancing the supply of lithium with future demand” (Gruber et al., 2011). In an attempt to quantify energy and materials consumption associated with production of a unit of useful lithium compounds, industry reports and peer-reviewed scientific literature concerning lithium mining and lithium recycling were reviewed and compared. Other aspects of sustainability, such as waste or by-products produced in the production of a unit of useful lithium, were also explored. Thus, this paper will serve to further the evaluation of the comparative environmental consequences associated with lithium production via extraction versus recycling. Efficiencies must be made in both processes to maximize productivity while minimizing ecological harm.
Resumo:
This paper presents a solution to part of the problem of making robotic or semi-robotic digging equipment less dependant on human supervision. A method is described for identifying rocks of a certain size that may affect digging efficiency or require special handling. The process involves three main steps. First, by using range and intensity data from a time-of-flight (TOF) camera, a feature descriptor is used to rank points and separate regions surrounding high scoring points. This allows a wide range of rocks to be recognized because features can represent a whole or just part of a rock. Second, these points are filtered to extract only points thought to belong to the large object. Finally, a check is carried out to verify that the resultant point cloud actually represents a rock. Results are presented from field testing on piles of fragmented rock. Note to Practitioners—This paper presents an algorithm to identify large boulders in a pile of broken rock as a step towards an autonomous mining dig planner. In mining, piles of broken rock can contain large fragments that may need to be specially handled. To assess rock piles for excavation, we make use of a TOF camera that does not rely on external lighting to generate a point cloud of the rock pile. We then segment large boulders from its surface by using a novel feature descriptor and distinguish between real and false boulder candidates. Preliminary field experiments show promising results with the algorithm performing nearly as well as human test subjects.