2 resultados para 3D motion model
em QSpace: Queen's University - Canada
Resumo:
The section of CN railway between Vancouver and Kamloops runs along the base of many hazardous slopes, including the White Canyon, which is located just outside the town of Lytton, BC. The slope has a history of frequent rockfall activity, which presents a hazard to the railway below. Rockfall inventories can be used to understand the frequency-magnitude relationship of events on hazardous slopes, however it can be difficult to consistently and accurately identify rockfall source zones and volumes on large slopes with frequent activity, leaving many inventories incomplete. We have studied this slope as a part of the Canadian Railway Ground Hazard Research Program and have collected remote sensing data, including terrestrial laser scanning (TLS), photographs, and photogrammetry data since 2012, and used change detection to identify rockfalls on the slope. The objective of this thesis is to use a subset of this data to understand how rockfalls identified from TLS data could be used to understand the frequency-magnitude relationship of rockfalls on the slope. This includes incorporating both new and existing methods to develop a semi-automated workflow to extract rockfall events from the TLS data. We show that these methods can be used to identify events as small as 0.01 m3 and that the duration between scans can have an effect on the frequency-magnitude relationship of the rockfalls. We also show that by incorporating photogrammetry data into our analysis, we can create a 3D geological model of the slope and use this to classify rockfalls by lithology, to further understand the rockfall failure patterns. When relating the rockfall activity to triggering factors, we found that the amount of precipitation occurring over the winter has an effect on the overall rockfall frequency for the remainder of the year. These results can provide the railways with a more complete inventory of events compared to records created through track inspection, or rockfall monitoring systems that are installed on the slope. In addition, we can use the database to understand the spatial and temporal distribution of events. The results can also be used as an input to rockfall modelling programs.
Resumo:
Moving through a stable, three-dimensional world is a hallmark of our motor and perceptual experience. This stability is constantly being challenged by movements of the eyes and head, inducing retinal blur and retino-spatial misalignments for which the brain must compensate. To do so, the brain must account for eye and head kinematics to transform two-dimensional retinal input into the reference frame necessary for movement or perception. The four studies in this thesis used both computational and psychophysical approaches to investigate several aspects of this reference frame transformation. In the first study, we examined the neural mechanism underlying the visuomotor transformation for smooth pursuit using a feedforward neural network model. After training, the model performed the general, three-dimensional transformation using gain modulation. This gave mechanistic significance to gain modulation observed in cortical pursuit areas while also providing several testable hypotheses for future electrophysiological work. In the second study, we asked how anticipatory pursuit, which is driven by memorized signals, accounts for eye and head geometry using a novel head-roll updating paradigm. We showed that the velocity memory driving anticipatory smooth pursuit relies on retinal signals, but is updated for the current head orientation. In the third study, we asked how forcing retinal motion to undergo a reference frame transformation influences perceptual decision making. We found that simply rolling one's head impairs perceptual decision making in a way captured by stochastic reference frame transformations. In the final study, we asked how torsional shifts of the retinal projection occurring with almost every eye movement influence orientation perception across saccades. We found a pre-saccadic, predictive remapping consistent with maintaining a purely retinal (but spatially inaccurate) orientation perception throughout the movement. Together these studies suggest that, despite their spatial inaccuracy, retinal signals play a surprisingly large role in our seamless visual experience. This work therefore represents a significant advance in our understanding of how the brain performs one of its most fundamental functions.